forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			712 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			712 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
 | |
| 
 | |
|    Inspired by Intel Approximate Math library, and based on the
 | |
|    corresponding algorithms of the cephes math library
 | |
| 
 | |
|    The default is to use the SSE1 version. If you define USE_SSE2 the
 | |
|    the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
 | |
|    not expect any significant performance improvement with SSE2.
 | |
| */
 | |
| 
 | |
| /* Copyright (C) 2007  Julien Pommier
 | |
| 
 | |
|   This software is provided 'as-is', without any express or implied
 | |
|   warranty.  In no event will the authors be held liable for any damages
 | |
|   arising from the use of this software.
 | |
| 
 | |
|   Permission is granted to anyone to use this software for any purpose,
 | |
|   including commercial applications, and to alter it and redistribute it
 | |
|   freely, subject to the following restrictions:
 | |
| 
 | |
|   1. The origin of this software must not be misrepresented; you must not
 | |
|      claim that you wrote the original software. If you use this software
 | |
|      in a product, an acknowledgment in the product documentation would be
 | |
|      appreciated but is not required.
 | |
|   2. Altered source versions must be plainly marked as such, and must not be
 | |
|      misrepresented as being the original software.
 | |
|   3. This notice may not be removed or altered from any source distribution.
 | |
| 
 | |
|   (this is the zlib license)
 | |
| */
 | |
| 
 | |
| #include <xmmintrin.h>
 | |
| 
 | |
| /* yes I know, the top of this file is quite ugly */
 | |
| 
 | |
| #ifdef _MSC_VER /* visual c++ */
 | |
| # define ALIGN16_BEG __declspec(align(16))
 | |
| # define ALIGN16_END 
 | |
| #else /* gcc or icc */
 | |
| # define ALIGN16_BEG
 | |
| # define ALIGN16_END __attribute__((aligned(16)))
 | |
| #endif
 | |
| 
 | |
| /* __m128 is ugly to write */
 | |
| typedef __m128 v4sf;  // vector of 4 float (sse1)
 | |
| 
 | |
| #ifdef USE_SSE2
 | |
| # include <emmintrin.h>
 | |
| typedef __m128i v4si; // vector of 4 int (sse2)
 | |
| #else
 | |
| typedef __m64 v2si;   // vector of 2 int (mmx)
 | |
| #endif
 | |
| 
 | |
| /* declare some SSE constants -- why can't I figure a better way to do that? */
 | |
| #define _PS_CONST(Name, Val)                                            \
 | |
|   static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
 | |
| #define _PI32_CONST(Name, Val)                                            \
 | |
|   static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
 | |
| #define _PS_CONST_TYPE(Name, Type, Val)                                 \
 | |
|   static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
 | |
| 
 | |
| _PS_CONST(1  , 1.0f);
 | |
| _PS_CONST(0p5, 0.5f);
 | |
| /* the smallest non denormalized float number */
 | |
| _PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
 | |
| _PS_CONST_TYPE(mant_mask, int, 0x7f800000);
 | |
| _PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
 | |
| 
 | |
| _PS_CONST_TYPE(sign_mask, int, (int)0x80000000);
 | |
| _PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
 | |
| 
 | |
| _PI32_CONST(1, 1);
 | |
| _PI32_CONST(inv1, ~1);
 | |
| _PI32_CONST(2, 2);
 | |
| _PI32_CONST(4, 4);
 | |
| _PI32_CONST(0x7f, 0x7f);
 | |
| 
 | |
| _PS_CONST(cephes_SQRTHF, 0.707106781186547524);
 | |
| _PS_CONST(cephes_log_p0, 7.0376836292E-2);
 | |
| _PS_CONST(cephes_log_p1, - 1.1514610310E-1);
 | |
| _PS_CONST(cephes_log_p2, 1.1676998740E-1);
 | |
| _PS_CONST(cephes_log_p3, - 1.2420140846E-1);
 | |
| _PS_CONST(cephes_log_p4, + 1.4249322787E-1);
 | |
| _PS_CONST(cephes_log_p5, - 1.6668057665E-1);
 | |
| _PS_CONST(cephes_log_p6, + 2.0000714765E-1);
 | |
| _PS_CONST(cephes_log_p7, - 2.4999993993E-1);
 | |
| _PS_CONST(cephes_log_p8, + 3.3333331174E-1);
 | |
| _PS_CONST(cephes_log_q1, -2.12194440e-4);
 | |
| _PS_CONST(cephes_log_q2, 0.693359375);
 | |
| 
 | |
| #ifndef USE_SSE2
 | |
| typedef union xmm_mm_union {
 | |
|   __m128 xmm;
 | |
|   __m64 mm[2];
 | |
| } xmm_mm_union;
 | |
| 
 | |
| #define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) {          \
 | |
|     xmm_mm_union u; u.xmm = xmm_;                   \
 | |
|     mm0_ = u.mm[0];                                 \
 | |
|     mm1_ = u.mm[1];                                 \
 | |
| }
 | |
| 
 | |
| #define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) {                         \
 | |
|     xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm;      \
 | |
|   }
 | |
| 
 | |
| #endif // USE_SSE2
 | |
| 
 | |
| /* natural logarithm computed for 4 simultaneous float 
 | |
|    return NaN for x <= 0
 | |
| */
 | |
| v4sf log_ps(v4sf x) {
 | |
| #ifdef USE_SSE2
 | |
|   v4si emm0;
 | |
| #else
 | |
|   v2si mm0, mm1;
 | |
| #endif
 | |
|   v4sf one = *(v4sf*)_ps_1;
 | |
| 
 | |
|   v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
 | |
| 
 | |
|   x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos);  /* cut off denormalized stuff */
 | |
| 
 | |
| #ifndef USE_SSE2
 | |
|   /* part 1: x = frexpf(x, &e); */
 | |
|   COPY_XMM_TO_MM(x, mm0, mm1);
 | |
|   mm0 = _mm_srli_pi32(mm0, 23);
 | |
|   mm1 = _mm_srli_pi32(mm1, 23);
 | |
| #else
 | |
|   emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
 | |
| #endif
 | |
|   /* keep only the fractional part */
 | |
|   x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
 | |
|   x = _mm_or_ps(x, *(v4sf*)_ps_0p5);
 | |
| 
 | |
| #ifndef USE_SSE2
 | |
|   /* now e=mm0:mm1 contain the really base-2 exponent */
 | |
|   mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f);
 | |
|   mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f);
 | |
|   v4sf e = _mm_cvtpi32x2_ps(mm0, mm1);
 | |
|   _mm_empty(); /* bye bye mmx */
 | |
| #else
 | |
|   emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
 | |
|   v4sf e = _mm_cvtepi32_ps(emm0);
 | |
| #endif
 | |
| 
 | |
|   e = _mm_add_ps(e, one);
 | |
| 
 | |
|   /* part2: 
 | |
|      if( x < SQRTHF ) {
 | |
|        e -= 1;
 | |
|        x = x + x - 1.0;
 | |
|      } else { x = x - 1.0; }
 | |
|   */
 | |
|   v4sf mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
 | |
|   v4sf tmp = _mm_and_ps(x, mask);
 | |
|   x = _mm_sub_ps(x, one);
 | |
|   e = _mm_sub_ps(e, _mm_and_ps(one, mask));
 | |
|   x = _mm_add_ps(x, tmp);
 | |
| 
 | |
| 
 | |
|   v4sf z = _mm_mul_ps(x,x);
 | |
| 
 | |
|   v4sf y = *(v4sf*)_ps_cephes_log_p0;
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
 | |
|   y = _mm_mul_ps(y, x);
 | |
| 
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   
 | |
| 
 | |
|   tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
 | |
|   y = _mm_add_ps(y, tmp);
 | |
| 
 | |
| 
 | |
|   tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
 | |
|   y = _mm_sub_ps(y, tmp);
 | |
| 
 | |
|   tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
 | |
|   x = _mm_add_ps(x, y);
 | |
|   x = _mm_add_ps(x, tmp);
 | |
|   x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
 | |
|   return x;
 | |
| }
 | |
| 
 | |
| _PS_CONST(exp_hi,	88.3762626647949f);
 | |
| _PS_CONST(exp_lo,	-88.3762626647949f);
 | |
| 
 | |
| _PS_CONST(cephes_LOG2EF, 1.44269504088896341);
 | |
| _PS_CONST(cephes_exp_C1, 0.693359375);
 | |
| _PS_CONST(cephes_exp_C2, -2.12194440e-4);
 | |
| 
 | |
| _PS_CONST(cephes_exp_p0, 1.9875691500E-4);
 | |
| _PS_CONST(cephes_exp_p1, 1.3981999507E-3);
 | |
| _PS_CONST(cephes_exp_p2, 8.3334519073E-3);
 | |
| _PS_CONST(cephes_exp_p3, 4.1665795894E-2);
 | |
| _PS_CONST(cephes_exp_p4, 1.6666665459E-1);
 | |
| _PS_CONST(cephes_exp_p5, 5.0000001201E-1);
 | |
| 
 | |
| v4sf exp_ps(v4sf x) {
 | |
|   v4sf tmp = _mm_setzero_ps(), fx;
 | |
| #ifdef USE_SSE2
 | |
|   v4si emm0;
 | |
| #else
 | |
|   v2si mm0, mm1;
 | |
| #endif
 | |
|   v4sf one = *(v4sf*)_ps_1;
 | |
| 
 | |
|   x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
 | |
|   x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);
 | |
| 
 | |
|   /* express exp(x) as exp(g + n*log(2)) */
 | |
|   fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
 | |
|   fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);
 | |
| 
 | |
|   /* how to perform a floorf with SSE: just below */
 | |
| #ifndef USE_SSE2
 | |
|   /* step 1 : cast to int */
 | |
|   tmp = _mm_movehl_ps(tmp, fx);
 | |
|   mm0 = _mm_cvttps_pi32(fx);
 | |
|   mm1 = _mm_cvttps_pi32(tmp);
 | |
|   /* step 2 : cast back to float */
 | |
|   tmp = _mm_cvtpi32x2_ps(mm0, mm1);
 | |
| #else
 | |
|   emm0 = _mm_cvttps_epi32(fx);
 | |
|   tmp  = _mm_cvtepi32_ps(emm0);
 | |
| #endif
 | |
|   /* if greater, substract 1 */
 | |
|   v4sf mask = _mm_cmpgt_ps(tmp, fx);    
 | |
|   mask = _mm_and_ps(mask, one);
 | |
|   fx = _mm_sub_ps(tmp, mask);
 | |
| 
 | |
|   tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
 | |
|   v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
 | |
|   x = _mm_sub_ps(x, tmp);
 | |
|   x = _mm_sub_ps(x, z);
 | |
| 
 | |
|   z = _mm_mul_ps(x,x);
 | |
|   
 | |
|   v4sf y = *(v4sf*)_ps_cephes_exp_p0;
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
 | |
|   y = _mm_mul_ps(y, x);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_add_ps(y, x);
 | |
|   y = _mm_add_ps(y, one);
 | |
| 
 | |
|   /* build 2^n */
 | |
| #ifndef USE_SSE2
 | |
|   z = _mm_movehl_ps(z, fx);
 | |
|   mm0 = _mm_cvttps_pi32(fx);
 | |
|   mm1 = _mm_cvttps_pi32(z);
 | |
|   mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f);
 | |
|   mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f);
 | |
|   mm0 = _mm_slli_pi32(mm0, 23); 
 | |
|   mm1 = _mm_slli_pi32(mm1, 23);
 | |
|   
 | |
|   v4sf pow2n; 
 | |
|   COPY_MM_TO_XMM(mm0, mm1, pow2n);
 | |
|   _mm_empty();
 | |
| #else
 | |
|   emm0 = _mm_cvttps_epi32(fx);
 | |
|   emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
 | |
|   emm0 = _mm_slli_epi32(emm0, 23);
 | |
|   v4sf pow2n = _mm_castsi128_ps(emm0);
 | |
| #endif
 | |
|   y = _mm_mul_ps(y, pow2n);
 | |
|   return y;
 | |
| }
 | |
| 
 | |
| _PS_CONST(minus_cephes_DP1, -0.78515625);
 | |
| _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
 | |
| _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
 | |
| _PS_CONST(sincof_p0, -1.9515295891E-4);
 | |
| _PS_CONST(sincof_p1,  8.3321608736E-3);
 | |
| _PS_CONST(sincof_p2, -1.6666654611E-1);
 | |
| _PS_CONST(coscof_p0,  2.443315711809948E-005);
 | |
| _PS_CONST(coscof_p1, -1.388731625493765E-003);
 | |
| _PS_CONST(coscof_p2,  4.166664568298827E-002);
 | |
| _PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
 | |
| 
 | |
| 
 | |
| /* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
 | |
|    it runs also on old athlons XPs and the pentium III of your grand
 | |
|    mother.
 | |
| 
 | |
|    The code is the exact rewriting of the cephes sinf function.
 | |
|    Precision is excellent as long as x < 8192 (I did not bother to
 | |
|    take into account the special handling they have for greater values
 | |
|    -- it does not return garbage for arguments over 8192, though, but
 | |
|    the extra precision is missing).
 | |
| 
 | |
|    Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
 | |
|    surprising but correct result.
 | |
| 
 | |
|    Performance is also surprisingly good, 1.33 times faster than the
 | |
|    macos vsinf SSE2 function, and 1.5 times faster than the
 | |
|    __vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
 | |
|    too bad for an SSE1 function (with no special tuning) !
 | |
|    However the latter libraries probably have a much better handling of NaN,
 | |
|    Inf, denormalized and other special arguments..
 | |
| 
 | |
|    On my core 1 duo, the execution of this function takes approximately 95 cycles.
 | |
| 
 | |
|    From what I have observed on the experiments with Intel AMath lib, switching to an
 | |
|    SSE2 version would improve the perf by only 10%.
 | |
| 
 | |
|    Since it is based on SSE intrinsics, it has to be compiled at -O2 to
 | |
|    deliver full speed.
 | |
| */
 | |
| v4sf sin_ps(v4sf x) { // any x
 | |
|   v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
 | |
| 
 | |
| #ifdef USE_SSE2
 | |
|   v4si emm0, emm2;
 | |
| #else
 | |
|   v2si mm0, mm1, mm2, mm3;
 | |
| #endif
 | |
|   sign_bit = x;
 | |
|   /* take the absolute value */
 | |
|   x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
 | |
|   /* extract the sign bit (upper one) */
 | |
|   sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
 | |
|   
 | |
|   /* scale by 4/Pi */
 | |
|   y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
 | |
| 
 | |
| #ifdef USE_SSE2
 | |
|   /* store the integer part of y in mm0 */
 | |
|   emm2 = _mm_cvttps_epi32(y);
 | |
|   /* j=(j+1) & (~1) (see the cephes sources) */
 | |
|   emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
 | |
|   emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
 | |
|   y = _mm_cvtepi32_ps(emm2);
 | |
| 
 | |
|   /* get the swap sign flag */
 | |
|   emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
 | |
|   emm0 = _mm_slli_epi32(emm0, 29);
 | |
|   /* get the polynom selection mask 
 | |
|      there is one polynom for 0 <= x <= Pi/4
 | |
|      and another one for Pi/4<x<=Pi/2
 | |
| 
 | |
|      Both branches will be computed.
 | |
|   */
 | |
|   emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
 | |
|   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
 | |
|   
 | |
|   v4sf swap_sign_bit = _mm_castsi128_ps(emm0);
 | |
|   v4sf poly_mask = _mm_castsi128_ps(emm2);
 | |
|   sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
 | |
|   
 | |
| #else
 | |
|   /* store the integer part of y in mm0:mm1 */
 | |
|   xmm2 = _mm_movehl_ps(xmm2, y);
 | |
|   mm2 = _mm_cvttps_pi32(y);
 | |
|   mm3 = _mm_cvttps_pi32(xmm2);
 | |
|   /* j=(j+1) & (~1) (see the cephes sources) */
 | |
|   mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
 | |
|   mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
 | |
|   mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
 | |
|   mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
 | |
|   y = _mm_cvtpi32x2_ps(mm2, mm3);
 | |
|   /* get the swap sign flag */
 | |
|   mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
 | |
|   mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
 | |
|   mm0 = _mm_slli_pi32(mm0, 29);
 | |
|   mm1 = _mm_slli_pi32(mm1, 29);
 | |
|   /* get the polynom selection mask */
 | |
|   mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
 | |
|   mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
 | |
|   mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
 | |
|   mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
 | |
|   v4sf swap_sign_bit, poly_mask;
 | |
|   COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit);
 | |
|   COPY_MM_TO_XMM(mm2, mm3, poly_mask);
 | |
|   sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
 | |
|   _mm_empty(); /* good-bye mmx */
 | |
| #endif
 | |
|   
 | |
|   /* The magic pass: "Extended precision modular arithmetic" 
 | |
|      x = ((x - y * DP1) - y * DP2) - y * DP3; */
 | |
|   xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
 | |
|   xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
 | |
|   xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
 | |
|   xmm1 = _mm_mul_ps(y, xmm1);
 | |
|   xmm2 = _mm_mul_ps(y, xmm2);
 | |
|   xmm3 = _mm_mul_ps(y, xmm3);
 | |
|   x = _mm_add_ps(x, xmm1);
 | |
|   x = _mm_add_ps(x, xmm2);
 | |
|   x = _mm_add_ps(x, xmm3);
 | |
| 
 | |
|   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
 | |
|   y = *(v4sf*)_ps_coscof_p0;
 | |
|   v4sf z = _mm_mul_ps(x,x);
 | |
| 
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
 | |
|   y = _mm_sub_ps(y, tmp);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_1);
 | |
|   
 | |
|   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
 | |
| 
 | |
|   v4sf y2 = *(v4sf*)_ps_sincof_p0;
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_mul_ps(y2, x);
 | |
|   y2 = _mm_add_ps(y2, x);
 | |
| 
 | |
|   /* select the correct result from the two polynoms */  
 | |
|   xmm3 = poly_mask;
 | |
|   y2 = _mm_and_ps(xmm3, y2); //, xmm3);
 | |
|   y = _mm_andnot_ps(xmm3, y);
 | |
|   y = _mm_add_ps(y,y2);
 | |
|   /* update the sign */
 | |
|   y = _mm_xor_ps(y, sign_bit);
 | |
|   return y;
 | |
| }
 | |
| 
 | |
| /* almost the same as sin_ps */
 | |
| v4sf cos_ps(v4sf x) { // any x
 | |
|   v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
 | |
| #ifdef USE_SSE2
 | |
|   v4si emm0, emm2;
 | |
| #else
 | |
|   v2si mm0, mm1, mm2, mm3;
 | |
| #endif
 | |
|   /* take the absolute value */
 | |
|   x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
 | |
|   
 | |
|   /* scale by 4/Pi */
 | |
|   y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
 | |
|   
 | |
| #ifdef USE_SSE2
 | |
|   /* store the integer part of y in mm0 */
 | |
|   emm2 = _mm_cvttps_epi32(y);
 | |
|   /* j=(j+1) & (~1) (see the cephes sources) */
 | |
|   emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
 | |
|   emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
 | |
|   y = _mm_cvtepi32_ps(emm2);
 | |
| 
 | |
|   emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
 | |
|   
 | |
|   /* get the swap sign flag */
 | |
|   emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
 | |
|   emm0 = _mm_slli_epi32(emm0, 29);
 | |
|   /* get the polynom selection mask */
 | |
|   emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
 | |
|   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
 | |
|   
 | |
|   v4sf sign_bit = _mm_castsi128_ps(emm0);
 | |
|   v4sf poly_mask = _mm_castsi128_ps(emm2);
 | |
| #else
 | |
|   /* store the integer part of y in mm0:mm1 */
 | |
|   xmm2 = _mm_movehl_ps(xmm2, y);
 | |
|   mm2 = _mm_cvttps_pi32(y);
 | |
|   mm3 = _mm_cvttps_pi32(xmm2);
 | |
| 
 | |
|   /* j=(j+1) & (~1) (see the cephes sources) */
 | |
|   mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
 | |
|   mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
 | |
|   mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
 | |
|   mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
 | |
| 
 | |
|   y = _mm_cvtpi32x2_ps(mm2, mm3);
 | |
| 
 | |
| 
 | |
|   mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2);
 | |
|   mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2);
 | |
| 
 | |
|   /* get the swap sign flag in mm0:mm1 and the 
 | |
|      polynom selection mask in mm2:mm3 */
 | |
| 
 | |
|   mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4);
 | |
|   mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4);
 | |
|   mm0 = _mm_slli_pi32(mm0, 29);
 | |
|   mm1 = _mm_slli_pi32(mm1, 29);
 | |
| 
 | |
|   mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
 | |
|   mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
 | |
| 
 | |
|   mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
 | |
|   mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
 | |
| 
 | |
|   v4sf sign_bit, poly_mask;
 | |
|   COPY_MM_TO_XMM(mm0, mm1, sign_bit);
 | |
|   COPY_MM_TO_XMM(mm2, mm3, poly_mask);
 | |
|   _mm_empty(); /* good-bye mmx */
 | |
| #endif
 | |
|   /* The magic pass: "Extended precision modular arithmetic" 
 | |
|      x = ((x - y * DP1) - y * DP2) - y * DP3; */
 | |
|   xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
 | |
|   xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
 | |
|   xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
 | |
|   xmm1 = _mm_mul_ps(y, xmm1);
 | |
|   xmm2 = _mm_mul_ps(y, xmm2);
 | |
|   xmm3 = _mm_mul_ps(y, xmm3);
 | |
|   x = _mm_add_ps(x, xmm1);
 | |
|   x = _mm_add_ps(x, xmm2);
 | |
|   x = _mm_add_ps(x, xmm3);
 | |
|   
 | |
|   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
 | |
|   y = *(v4sf*)_ps_coscof_p0;
 | |
|   v4sf z = _mm_mul_ps(x,x);
 | |
| 
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
 | |
|   y = _mm_sub_ps(y, tmp);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_1);
 | |
|   
 | |
|   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
 | |
| 
 | |
|   v4sf y2 = *(v4sf*)_ps_sincof_p0;
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_mul_ps(y2, x);
 | |
|   y2 = _mm_add_ps(y2, x);
 | |
| 
 | |
|   /* select the correct result from the two polynoms */  
 | |
|   xmm3 = poly_mask;
 | |
|   y2 = _mm_and_ps(xmm3, y2); //, xmm3);
 | |
|   y = _mm_andnot_ps(xmm3, y);
 | |
|   y = _mm_add_ps(y,y2);
 | |
|   /* update the sign */
 | |
|   y = _mm_xor_ps(y, sign_bit);
 | |
| 
 | |
|   return y;
 | |
| }
 | |
| 
 | |
| /* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
 | |
|    it is almost as fast, and gives you a free cosine with your sine */
 | |
| void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
 | |
|   v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
 | |
| #ifdef USE_SSE2
 | |
|   v4si emm0, emm2, emm4;
 | |
| #else
 | |
|   v2si mm0, mm1, mm2, mm3, mm4, mm5;
 | |
| #endif
 | |
|   sign_bit_sin = x;
 | |
|   /* take the absolute value */
 | |
|   x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
 | |
|   /* extract the sign bit (upper one) */
 | |
|   sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
 | |
|   
 | |
|   /* scale by 4/Pi */
 | |
|   y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
 | |
|     
 | |
| #ifdef USE_SSE2
 | |
|   /* store the integer part of y in emm2 */
 | |
|   emm2 = _mm_cvttps_epi32(y);
 | |
| 
 | |
|   /* j=(j+1) & (~1) (see the cephes sources) */
 | |
|   emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
 | |
|   emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
 | |
|   y = _mm_cvtepi32_ps(emm2);
 | |
| 
 | |
|   emm4 = emm2;
 | |
| 
 | |
|   /* get the swap sign flag for the sine */
 | |
|   emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
 | |
|   emm0 = _mm_slli_epi32(emm0, 29);
 | |
|   v4sf swap_sign_bit_sin = _mm_castsi128_ps(emm0);
 | |
| 
 | |
|   /* get the polynom selection mask for the sine*/
 | |
|   emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
 | |
|   emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
 | |
|   v4sf poly_mask = _mm_castsi128_ps(emm2);
 | |
| #else
 | |
|   /* store the integer part of y in mm2:mm3 */
 | |
|   xmm3 = _mm_movehl_ps(xmm3, y);
 | |
|   mm2 = _mm_cvttps_pi32(y);
 | |
|   mm3 = _mm_cvttps_pi32(xmm3);
 | |
| 
 | |
|   /* j=(j+1) & (~1) (see the cephes sources) */
 | |
|   mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
 | |
|   mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
 | |
|   mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
 | |
|   mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
 | |
| 
 | |
|   y = _mm_cvtpi32x2_ps(mm2, mm3);
 | |
| 
 | |
|   mm4 = mm2;
 | |
|   mm5 = mm3;
 | |
| 
 | |
|   /* get the swap sign flag for the sine */
 | |
|   mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
 | |
|   mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
 | |
|   mm0 = _mm_slli_pi32(mm0, 29);
 | |
|   mm1 = _mm_slli_pi32(mm1, 29);
 | |
|   v4sf swap_sign_bit_sin;
 | |
|   COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin);
 | |
| 
 | |
|   /* get the polynom selection mask for the sine */
 | |
| 
 | |
|   mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
 | |
|   mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
 | |
|   mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
 | |
|   mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());
 | |
|   v4sf poly_mask;
 | |
|   COPY_MM_TO_XMM(mm2, mm3, poly_mask);
 | |
| #endif
 | |
| 
 | |
|   /* The magic pass: "Extended precision modular arithmetic" 
 | |
|      x = ((x - y * DP1) - y * DP2) - y * DP3; */
 | |
|   xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
 | |
|   xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
 | |
|   xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
 | |
|   xmm1 = _mm_mul_ps(y, xmm1);
 | |
|   xmm2 = _mm_mul_ps(y, xmm2);
 | |
|   xmm3 = _mm_mul_ps(y, xmm3);
 | |
|   x = _mm_add_ps(x, xmm1);
 | |
|   x = _mm_add_ps(x, xmm2);
 | |
|   x = _mm_add_ps(x, xmm3);
 | |
| 
 | |
| #ifdef USE_SSE2
 | |
|   emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
 | |
|   emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
 | |
|   emm4 = _mm_slli_epi32(emm4, 29);
 | |
|   v4sf sign_bit_cos = _mm_castsi128_ps(emm4);
 | |
| #else
 | |
|   /* get the sign flag for the cosine */
 | |
|   mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2);
 | |
|   mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2);
 | |
|   mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4);
 | |
|   mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4);
 | |
|   mm4 = _mm_slli_pi32(mm4, 29);
 | |
|   mm5 = _mm_slli_pi32(mm5, 29);
 | |
|   v4sf sign_bit_cos;
 | |
|   COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos);
 | |
|   _mm_empty(); /* good-bye mmx */
 | |
| #endif
 | |
| 
 | |
|   sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
 | |
| 
 | |
|   
 | |
|   /* Evaluate the first polynom  (0 <= x <= Pi/4) */
 | |
|   v4sf z = _mm_mul_ps(x,x);
 | |
|   y = *(v4sf*)_ps_coscof_p0;
 | |
| 
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   y = _mm_mul_ps(y, z);
 | |
|   v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
 | |
|   y = _mm_sub_ps(y, tmp);
 | |
|   y = _mm_add_ps(y, *(v4sf*)_ps_1);
 | |
|   
 | |
|   /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
 | |
| 
 | |
|   v4sf y2 = *(v4sf*)_ps_sincof_p0;
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
 | |
|   y2 = _mm_mul_ps(y2, z);
 | |
|   y2 = _mm_mul_ps(y2, x);
 | |
|   y2 = _mm_add_ps(y2, x);
 | |
| 
 | |
|   /* select the correct result from the two polynoms */  
 | |
|   xmm3 = poly_mask;
 | |
|   v4sf ysin2 = _mm_and_ps(xmm3, y2);
 | |
|   v4sf ysin1 = _mm_andnot_ps(xmm3, y);
 | |
|   y2 = _mm_sub_ps(y2,ysin2);
 | |
|   y = _mm_sub_ps(y, ysin1);
 | |
| 
 | |
|   xmm1 = _mm_add_ps(ysin1,ysin2);
 | |
|   xmm2 = _mm_add_ps(y,y2);
 | |
|  
 | |
|   /* update the sign */
 | |
|   *s = _mm_xor_ps(xmm1, sign_bit_sin);
 | |
|   *c = _mm_xor_ps(xmm2, sign_bit_cos);
 | |
| }
 | |
| 
 |