forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			803 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			803 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <float.h>
 | |
| #include "DetourNavMesh.h"
 | |
| #include "DetourCommon.h"
 | |
| #include "DetourMath.h"
 | |
| #include "DetourNavMeshBuilder.h"
 | |
| #include "DetourAlloc.h"
 | |
| #include "DetourAssert.h"
 | |
| 
 | |
| static unsigned short MESH_NULL_IDX = 0xffff;
 | |
| 
 | |
| 
 | |
| struct BVItem
 | |
| {
 | |
| 	unsigned short bmin[3];
 | |
| 	unsigned short bmax[3];
 | |
| 	int i;
 | |
| };
 | |
| 
 | |
| static int compareItemX(const void* va, const void* vb)
 | |
| {
 | |
| 	const BVItem* a = (const BVItem*)va;
 | |
| 	const BVItem* b = (const BVItem*)vb;
 | |
| 	if (a->bmin[0] < b->bmin[0])
 | |
| 		return -1;
 | |
| 	if (a->bmin[0] > b->bmin[0])
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int compareItemY(const void* va, const void* vb)
 | |
| {
 | |
| 	const BVItem* a = (const BVItem*)va;
 | |
| 	const BVItem* b = (const BVItem*)vb;
 | |
| 	if (a->bmin[1] < b->bmin[1])
 | |
| 		return -1;
 | |
| 	if (a->bmin[1] > b->bmin[1])
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int compareItemZ(const void* va, const void* vb)
 | |
| {
 | |
| 	const BVItem* a = (const BVItem*)va;
 | |
| 	const BVItem* b = (const BVItem*)vb;
 | |
| 	if (a->bmin[2] < b->bmin[2])
 | |
| 		return -1;
 | |
| 	if (a->bmin[2] > b->bmin[2])
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void calcExtends(BVItem* items, const int /*nitems*/, const int imin, const int imax,
 | |
| 						unsigned short* bmin, unsigned short* bmax)
 | |
| {
 | |
| 	bmin[0] = items[imin].bmin[0];
 | |
| 	bmin[1] = items[imin].bmin[1];
 | |
| 	bmin[2] = items[imin].bmin[2];
 | |
| 	
 | |
| 	bmax[0] = items[imin].bmax[0];
 | |
| 	bmax[1] = items[imin].bmax[1];
 | |
| 	bmax[2] = items[imin].bmax[2];
 | |
| 	
 | |
| 	for (int i = imin+1; i < imax; ++i)
 | |
| 	{
 | |
| 		const BVItem& it = items[i];
 | |
| 		if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
 | |
| 		if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
 | |
| 		if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2];
 | |
| 		
 | |
| 		if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
 | |
| 		if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
 | |
| 		if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| inline int longestAxis(unsigned short x, unsigned short y, unsigned short z)
 | |
| {
 | |
| 	int	axis = 0;
 | |
| 	unsigned short maxVal = x;
 | |
| 	if (y > maxVal)
 | |
| 	{
 | |
| 		axis = 1;
 | |
| 		maxVal = y;
 | |
| 	}
 | |
| 	if (z > maxVal)
 | |
| 	{
 | |
| 		axis = 2;
 | |
| 	}
 | |
| 	return axis;
 | |
| }
 | |
| 
 | |
| static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtBVNode* nodes)
 | |
| {
 | |
| 	int inum = imax - imin;
 | |
| 	int icur = curNode;
 | |
| 	
 | |
| 	dtBVNode& node = nodes[curNode++];
 | |
| 	
 | |
| 	if (inum == 1)
 | |
| 	{
 | |
| 		// Leaf
 | |
| 		node.bmin[0] = items[imin].bmin[0];
 | |
| 		node.bmin[1] = items[imin].bmin[1];
 | |
| 		node.bmin[2] = items[imin].bmin[2];
 | |
| 		
 | |
| 		node.bmax[0] = items[imin].bmax[0];
 | |
| 		node.bmax[1] = items[imin].bmax[1];
 | |
| 		node.bmax[2] = items[imin].bmax[2];
 | |
| 		
 | |
| 		node.i = items[imin].i;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Split
 | |
| 		calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
 | |
| 		
 | |
| 		int	axis = longestAxis(node.bmax[0] - node.bmin[0],
 | |
| 							   node.bmax[1] - node.bmin[1],
 | |
| 							   node.bmax[2] - node.bmin[2]);
 | |
| 		
 | |
| 		if (axis == 0)
 | |
| 		{
 | |
| 			// Sort along x-axis
 | |
| 			qsort(items+imin, inum, sizeof(BVItem), compareItemX);
 | |
| 		}
 | |
| 		else if (axis == 1)
 | |
| 		{
 | |
| 			// Sort along y-axis
 | |
| 			qsort(items+imin, inum, sizeof(BVItem), compareItemY);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// Sort along z-axis
 | |
| 			qsort(items+imin, inum, sizeof(BVItem), compareItemZ);
 | |
| 		}
 | |
| 		
 | |
| 		int isplit = imin+inum/2;
 | |
| 		
 | |
| 		// Left
 | |
| 		subdivide(items, nitems, imin, isplit, curNode, nodes);
 | |
| 		// Right
 | |
| 		subdivide(items, nitems, isplit, imax, curNode, nodes);
 | |
| 		
 | |
| 		int iescape = curNode - icur;
 | |
| 		// Negative index means escape.
 | |
| 		node.i = -iescape;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int createBVTree(dtNavMeshCreateParams* params, dtBVNode* nodes, int /*nnodes*/)
 | |
| {
 | |
| 	// Build tree
 | |
| 	float quantFactor = 1 / params->cs;
 | |
| 	BVItem* items = (BVItem*)dtAlloc(sizeof(BVItem)*params->polyCount, DT_ALLOC_TEMP);
 | |
| 	for (int i = 0; i < params->polyCount; i++)
 | |
| 	{
 | |
| 		BVItem& it = items[i];
 | |
| 		it.i = i;
 | |
| 		// Calc polygon bounds. Use detail meshes if available.
 | |
| 		if (params->detailMeshes)
 | |
| 		{
 | |
| 			int vb = (int)params->detailMeshes[i*4+0];
 | |
| 			int ndv = (int)params->detailMeshes[i*4+1];
 | |
| 			float bmin[3];
 | |
| 			float bmax[3];
 | |
| 
 | |
| 			const float* dv = ¶ms->detailVerts[vb*3];
 | |
| 			dtVcopy(bmin, dv);
 | |
| 			dtVcopy(bmax, dv);
 | |
| 
 | |
| 			for (int j = 1; j < ndv; j++)
 | |
| 			{
 | |
| 				dtVmin(bmin, &dv[j * 3]);
 | |
| 				dtVmax(bmax, &dv[j * 3]);
 | |
| 			}
 | |
| 
 | |
| 			// BV-tree uses cs for all dimensions
 | |
| 			it.bmin[0] = (unsigned short)dtClamp((int)((bmin[0] - params->bmin[0])*quantFactor), 0, 0xffff);
 | |
| 			it.bmin[1] = (unsigned short)dtClamp((int)((bmin[1] - params->bmin[1])*quantFactor), 0, 0xffff);
 | |
| 			it.bmin[2] = (unsigned short)dtClamp((int)((bmin[2] - params->bmin[2])*quantFactor), 0, 0xffff);
 | |
| 
 | |
| 			it.bmax[0] = (unsigned short)dtClamp((int)((bmax[0] - params->bmin[0])*quantFactor), 0, 0xffff);
 | |
| 			it.bmax[1] = (unsigned short)dtClamp((int)((bmax[1] - params->bmin[1])*quantFactor), 0, 0xffff);
 | |
| 			it.bmax[2] = (unsigned short)dtClamp((int)((bmax[2] - params->bmin[2])*quantFactor), 0, 0xffff);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			const unsigned short* p = ¶ms->polys[i*params->nvp * 2];
 | |
| 			it.bmin[0] = it.bmax[0] = params->verts[p[0] * 3 + 0];
 | |
| 			it.bmin[1] = it.bmax[1] = params->verts[p[0] * 3 + 1];
 | |
| 			it.bmin[2] = it.bmax[2] = params->verts[p[0] * 3 + 2];
 | |
| 
 | |
| 			for (int j = 1; j < params->nvp; ++j)
 | |
| 			{
 | |
| 				if (p[j] == MESH_NULL_IDX) break;
 | |
| 				unsigned short x = params->verts[p[j] * 3 + 0];
 | |
| 				unsigned short y = params->verts[p[j] * 3 + 1];
 | |
| 				unsigned short z = params->verts[p[j] * 3 + 2];
 | |
| 
 | |
| 				if (x < it.bmin[0]) it.bmin[0] = x;
 | |
| 				if (y < it.bmin[1]) it.bmin[1] = y;
 | |
| 				if (z < it.bmin[2]) it.bmin[2] = z;
 | |
| 
 | |
| 				if (x > it.bmax[0]) it.bmax[0] = x;
 | |
| 				if (y > it.bmax[1]) it.bmax[1] = y;
 | |
| 				if (z > it.bmax[2]) it.bmax[2] = z;
 | |
| 			}
 | |
| 			// Remap y
 | |
| 			it.bmin[1] = (unsigned short)dtMathFloorf((float)it.bmin[1] * params->ch / params->cs);
 | |
| 			it.bmax[1] = (unsigned short)dtMathCeilf((float)it.bmax[1] * params->ch / params->cs);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	int curNode = 0;
 | |
| 	subdivide(items, params->polyCount, 0, params->polyCount, curNode, nodes);
 | |
| 	
 | |
| 	dtFree(items);
 | |
| 	
 | |
| 	return curNode;
 | |
| }
 | |
| 
 | |
| static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, const float* bmax)
 | |
| {
 | |
| 	static const unsigned char XP = 1<<0;
 | |
| 	static const unsigned char ZP = 1<<1;
 | |
| 	static const unsigned char XM = 1<<2;
 | |
| 	static const unsigned char ZM = 1<<3;	
 | |
| 
 | |
| 	unsigned char outcode = 0; 
 | |
| 	outcode |= (pt[0] >= bmax[0]) ? XP : 0;
 | |
| 	outcode |= (pt[2] >= bmax[2]) ? ZP : 0;
 | |
| 	outcode |= (pt[0] < bmin[0])  ? XM : 0;
 | |
| 	outcode |= (pt[2] < bmin[2])  ? ZM : 0;
 | |
| 
 | |
| 	switch (outcode)
 | |
| 	{
 | |
| 	case XP: return 0;
 | |
| 	case XP|ZP: return 1;
 | |
| 	case ZP: return 2;
 | |
| 	case XM|ZP: return 3;
 | |
| 	case XM: return 4;
 | |
| 	case XM|ZM: return 5;
 | |
| 	case ZM: return 6;
 | |
| 	case XP|ZM: return 7;
 | |
| 	};
 | |
| 
 | |
| 	return 0xff;	
 | |
| }
 | |
| 
 | |
| // TODO: Better error handling.
 | |
| 
 | |
| /// @par
 | |
| /// 
 | |
| /// The output data array is allocated using the detour allocator (dtAlloc()).  The method
 | |
| /// used to free the memory will be determined by how the tile is added to the navigation
 | |
| /// mesh.
 | |
| ///
 | |
| /// @see dtNavMesh, dtNavMesh::addTile()
 | |
| bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize)
 | |
| {
 | |
| 	if (params->nvp > DT_VERTS_PER_POLYGON)
 | |
| 		return false;
 | |
| 	if (params->vertCount >= 0xffff)
 | |
| 		return false;
 | |
| 	if (!params->vertCount || !params->verts)
 | |
| 		return false;
 | |
| 	if (!params->polyCount || !params->polys)
 | |
| 		return false;
 | |
| 
 | |
| 	const int nvp = params->nvp;
 | |
| 	
 | |
| 	// Classify off-mesh connection points. We store only the connections
 | |
| 	// whose start point is inside the tile.
 | |
| 	unsigned char* offMeshConClass = 0;
 | |
| 	int storedOffMeshConCount = 0;
 | |
| 	int offMeshConLinkCount = 0;
 | |
| 	
 | |
| 	if (params->offMeshConCount > 0)
 | |
| 	{
 | |
| 		offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP);
 | |
| 		if (!offMeshConClass)
 | |
| 			return false;
 | |
| 
 | |
| 		// Find tight heigh bounds, used for culling out off-mesh start locations.
 | |
| 		float hmin = FLT_MAX;
 | |
| 		float hmax = -FLT_MAX;
 | |
| 		
 | |
| 		if (params->detailVerts && params->detailVertsCount)
 | |
| 		{
 | |
| 			for (int i = 0; i < params->detailVertsCount; ++i)
 | |
| 			{
 | |
| 				const float h = params->detailVerts[i*3+1];
 | |
| 				hmin = dtMin(hmin,h);
 | |
| 				hmax = dtMax(hmax,h);
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			for (int i = 0; i < params->vertCount; ++i)
 | |
| 			{
 | |
| 				const unsigned short* iv = ¶ms->verts[i*3];
 | |
| 				const float h = params->bmin[1] + iv[1] * params->ch;
 | |
| 				hmin = dtMin(hmin,h);
 | |
| 				hmax = dtMax(hmax,h);
 | |
| 			}
 | |
| 		}
 | |
| 		hmin -= params->walkableClimb;
 | |
| 		hmax += params->walkableClimb;
 | |
| 		float bmin[3], bmax[3];
 | |
| 		dtVcopy(bmin, params->bmin);
 | |
| 		dtVcopy(bmax, params->bmax);
 | |
| 		bmin[1] = hmin;
 | |
| 		bmax[1] = hmax;
 | |
| 
 | |
| 		for (int i = 0; i < params->offMeshConCount; ++i)
 | |
| 		{
 | |
| 			const float* p0 = ¶ms->offMeshConVerts[(i*2+0)*3];
 | |
| 			const float* p1 = ¶ms->offMeshConVerts[(i*2+1)*3];
 | |
| 			offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax);
 | |
| 			offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax);
 | |
| 
 | |
| 			// Zero out off-mesh start positions which are not even potentially touching the mesh.
 | |
| 			if (offMeshConClass[i*2+0] == 0xff)
 | |
| 			{
 | |
| 				if (p0[1] < bmin[1] || p0[1] > bmax[1])
 | |
| 					offMeshConClass[i*2+0] = 0;
 | |
| 			}
 | |
| 
 | |
| 			// Cound how many links should be allocated for off-mesh connections.
 | |
| 			if (offMeshConClass[i*2+0] == 0xff)
 | |
| 				offMeshConLinkCount++;
 | |
| 			if (offMeshConClass[i*2+1] == 0xff)
 | |
| 				offMeshConLinkCount++;
 | |
| 
 | |
| 			if (offMeshConClass[i*2+0] == 0xff)
 | |
| 				storedOffMeshConCount++;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Off-mesh connectionss are stored as polygons, adjust values.
 | |
| 	const int totPolyCount = params->polyCount + storedOffMeshConCount;
 | |
| 	const int totVertCount = params->vertCount + storedOffMeshConCount*2;
 | |
| 	
 | |
| 	// Find portal edges which are at tile borders.
 | |
| 	int edgeCount = 0;
 | |
| 	int portalCount = 0;
 | |
| 	for (int i = 0; i < params->polyCount; ++i)
 | |
| 	{
 | |
| 		const unsigned short* p = ¶ms->polys[i*2*nvp];
 | |
| 		for (int j = 0; j < nvp; ++j)
 | |
| 		{
 | |
| 			if (p[j] == MESH_NULL_IDX) break;
 | |
| 			edgeCount++;
 | |
| 			
 | |
| 			if (p[nvp+j] & 0x8000)
 | |
| 			{
 | |
| 				unsigned short dir = p[nvp+j] & 0xf;
 | |
| 				if (dir != 0xf)
 | |
| 					portalCount++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2;
 | |
| 	
 | |
| 	// Find unique detail vertices.
 | |
| 	int uniqueDetailVertCount = 0;
 | |
| 	int detailTriCount = 0;
 | |
| 	if (params->detailMeshes)
 | |
| 	{
 | |
| 		// Has detail mesh, count unique detail vertex count and use input detail tri count.
 | |
| 		detailTriCount = params->detailTriCount;
 | |
| 		for (int i = 0; i < params->polyCount; ++i)
 | |
| 		{
 | |
| 			const unsigned short* p = ¶ms->polys[i*nvp*2];
 | |
| 			int ndv = params->detailMeshes[i*4+1];
 | |
| 			int nv = 0;
 | |
| 			for (int j = 0; j < nvp; ++j)
 | |
| 			{
 | |
| 				if (p[j] == MESH_NULL_IDX) break;
 | |
| 				nv++;
 | |
| 			}
 | |
| 			ndv -= nv;
 | |
| 			uniqueDetailVertCount += ndv;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// No input detail mesh, build detail mesh from nav polys.
 | |
| 		uniqueDetailVertCount = 0; // No extra detail verts.
 | |
| 		detailTriCount = 0;
 | |
| 		for (int i = 0; i < params->polyCount; ++i)
 | |
| 		{
 | |
| 			const unsigned short* p = ¶ms->polys[i*nvp*2];
 | |
| 			int nv = 0;
 | |
| 			for (int j = 0; j < nvp; ++j)
 | |
| 			{
 | |
| 				if (p[j] == MESH_NULL_IDX) break;
 | |
| 				nv++;
 | |
| 			}
 | |
| 			detailTriCount += nv-2;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Calculate data size
 | |
| 	const int headerSize = dtAlign4(sizeof(dtMeshHeader));
 | |
| 	const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount);
 | |
| 	const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount);
 | |
| 	const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount);
 | |
| 	const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount);
 | |
| 	const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount);
 | |
| 	const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount);
 | |
| 	const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0;
 | |
| 	const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount);
 | |
| 	
 | |
| 	const int dataSize = headerSize + vertsSize + polysSize + linksSize +
 | |
| 						 detailMeshesSize + detailVertsSize + detailTrisSize +
 | |
| 						 bvTreeSize + offMeshConsSize;
 | |
| 						 
 | |
| 	unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM);
 | |
| 	if (!data)
 | |
| 	{
 | |
| 		dtFree(offMeshConClass);
 | |
| 		return false;
 | |
| 	}
 | |
| 	memset(data, 0, dataSize);
 | |
| 	
 | |
| 	unsigned char* d = data;
 | |
| 
 | |
| 	dtMeshHeader* header = dtGetThenAdvanceBufferPointer<dtMeshHeader>(d, headerSize);
 | |
| 	float* navVerts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
 | |
| 	dtPoly* navPolys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
 | |
| 	d += linksSize; // Ignore links; just leave enough space for them. They'll be created on load.
 | |
| 	dtPolyDetail* navDMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
 | |
| 	float* navDVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
 | |
| 	unsigned char* navDTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
 | |
| 	dtBVNode* navBvtree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvTreeSize);
 | |
| 	dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshConsSize);
 | |
| 	
 | |
| 	
 | |
| 	// Store header
 | |
| 	header->magic = DT_NAVMESH_MAGIC;
 | |
| 	header->version = DT_NAVMESH_VERSION;
 | |
| 	header->x = params->tileX;
 | |
| 	header->y = params->tileY;
 | |
| 	header->layer = params->tileLayer;
 | |
| 	header->userId = params->userId;
 | |
| 	header->polyCount = totPolyCount;
 | |
| 	header->vertCount = totVertCount;
 | |
| 	header->maxLinkCount = maxLinkCount;
 | |
| 	dtVcopy(header->bmin, params->bmin);
 | |
| 	dtVcopy(header->bmax, params->bmax);
 | |
| 	header->detailMeshCount = params->polyCount;
 | |
| 	header->detailVertCount = uniqueDetailVertCount;
 | |
| 	header->detailTriCount = detailTriCount;
 | |
| 	header->bvQuantFactor = 1.0f / params->cs;
 | |
| 	header->offMeshBase = params->polyCount;
 | |
| 	header->walkableHeight = params->walkableHeight;
 | |
| 	header->walkableRadius = params->walkableRadius;
 | |
| 	header->walkableClimb = params->walkableClimb;
 | |
| 	header->offMeshConCount = storedOffMeshConCount;
 | |
| 	header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0;
 | |
| 	
 | |
| 	const int offMeshVertsBase = params->vertCount;
 | |
| 	const int offMeshPolyBase = params->polyCount;
 | |
| 	
 | |
| 	// Store vertices
 | |
| 	// Mesh vertices
 | |
| 	for (int i = 0; i < params->vertCount; ++i)
 | |
| 	{
 | |
| 		const unsigned short* iv = ¶ms->verts[i*3];
 | |
| 		float* v = &navVerts[i*3];
 | |
| 		v[0] = params->bmin[0] + iv[0] * params->cs;
 | |
| 		v[1] = params->bmin[1] + iv[1] * params->ch;
 | |
| 		v[2] = params->bmin[2] + iv[2] * params->cs;
 | |
| 	}
 | |
| 	// Off-mesh link vertices.
 | |
| 	int n = 0;
 | |
| 	for (int i = 0; i < params->offMeshConCount; ++i)
 | |
| 	{
 | |
| 		// Only store connections which start from this tile.
 | |
| 		if (offMeshConClass[i*2+0] == 0xff)
 | |
| 		{
 | |
| 			const float* linkv = ¶ms->offMeshConVerts[i*2*3];
 | |
| 			float* v = &navVerts[(offMeshVertsBase + n*2)*3];
 | |
| 			dtVcopy(&v[0], &linkv[0]);
 | |
| 			dtVcopy(&v[3], &linkv[3]);
 | |
| 			n++;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Store polygons
 | |
| 	// Mesh polys
 | |
| 	const unsigned short* src = params->polys;
 | |
| 	for (int i = 0; i < params->polyCount; ++i)
 | |
| 	{
 | |
| 		dtPoly* p = &navPolys[i];
 | |
| 		p->vertCount = 0;
 | |
| 		p->flags = params->polyFlags[i];
 | |
| 		p->setArea(params->polyAreas[i]);
 | |
| 		p->setType(DT_POLYTYPE_GROUND);
 | |
| 		for (int j = 0; j < nvp; ++j)
 | |
| 		{
 | |
| 			if (src[j] == MESH_NULL_IDX) break;
 | |
| 			p->verts[j] = src[j];
 | |
| 			if (src[nvp+j] & 0x8000)
 | |
| 			{
 | |
| 				// Border or portal edge.
 | |
| 				unsigned short dir = src[nvp+j] & 0xf;
 | |
| 				if (dir == 0xf) // Border
 | |
| 					p->neis[j] = 0;
 | |
| 				else if (dir == 0) // Portal x-
 | |
| 					p->neis[j] = DT_EXT_LINK | 4;
 | |
| 				else if (dir == 1) // Portal z+
 | |
| 					p->neis[j] = DT_EXT_LINK | 2;
 | |
| 				else if (dir == 2) // Portal x+
 | |
| 					p->neis[j] = DT_EXT_LINK | 0;
 | |
| 				else if (dir == 3) // Portal z-
 | |
| 					p->neis[j] = DT_EXT_LINK | 6;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Normal connection
 | |
| 				p->neis[j] = src[nvp+j]+1;
 | |
| 			}
 | |
| 			
 | |
| 			p->vertCount++;
 | |
| 		}
 | |
| 		src += nvp*2;
 | |
| 	}
 | |
| 	// Off-mesh connection vertices.
 | |
| 	n = 0;
 | |
| 	for (int i = 0; i < params->offMeshConCount; ++i)
 | |
| 	{
 | |
| 		// Only store connections which start from this tile.
 | |
| 		if (offMeshConClass[i*2+0] == 0xff)
 | |
| 		{
 | |
| 			dtPoly* p = &navPolys[offMeshPolyBase+n];
 | |
| 			p->vertCount = 2;
 | |
| 			p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0);
 | |
| 			p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1);
 | |
| 			p->flags = params->offMeshConFlags[i];
 | |
| 			p->setArea(params->offMeshConAreas[i]);
 | |
| 			p->setType(DT_POLYTYPE_OFFMESH_CONNECTION);
 | |
| 			n++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Store detail meshes and vertices.
 | |
| 	// The nav polygon vertices are stored as the first vertices on each mesh.
 | |
| 	// We compress the mesh data by skipping them and using the navmesh coordinates.
 | |
| 	if (params->detailMeshes)
 | |
| 	{
 | |
| 		unsigned short vbase = 0;
 | |
| 		for (int i = 0; i < params->polyCount; ++i)
 | |
| 		{
 | |
| 			dtPolyDetail& dtl = navDMeshes[i];
 | |
| 			const int vb = (int)params->detailMeshes[i*4+0];
 | |
| 			const int ndv = (int)params->detailMeshes[i*4+1];
 | |
| 			const int nv = navPolys[i].vertCount;
 | |
| 			dtl.vertBase = (unsigned int)vbase;
 | |
| 			dtl.vertCount = (unsigned char)(ndv-nv);
 | |
| 			dtl.triBase = (unsigned int)params->detailMeshes[i*4+2];
 | |
| 			dtl.triCount = (unsigned char)params->detailMeshes[i*4+3];
 | |
| 			// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
 | |
| 			if (ndv-nv)
 | |
| 			{
 | |
| 				memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
 | |
| 				vbase += (unsigned short)(ndv-nv);
 | |
| 			}
 | |
| 		}
 | |
| 		// Store triangles.
 | |
| 		memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Create dummy detail mesh by triangulating polys.
 | |
| 		int tbase = 0;
 | |
| 		for (int i = 0; i < params->polyCount; ++i)
 | |
| 		{
 | |
| 			dtPolyDetail& dtl = navDMeshes[i];
 | |
| 			const int nv = navPolys[i].vertCount;
 | |
| 			dtl.vertBase = 0;
 | |
| 			dtl.vertCount = 0;
 | |
| 			dtl.triBase = (unsigned int)tbase;
 | |
| 			dtl.triCount = (unsigned char)(nv-2);
 | |
| 			// Triangulate polygon (local indices).
 | |
| 			for (int j = 2; j < nv; ++j)
 | |
| 			{
 | |
| 				unsigned char* t = &navDTris[tbase*4];
 | |
| 				t[0] = 0;
 | |
| 				t[1] = (unsigned char)(j-1);
 | |
| 				t[2] = (unsigned char)j;
 | |
| 				// Bit for each edge that belongs to poly boundary.
 | |
| 				t[3] = (1<<2);
 | |
| 				if (j == 2) t[3] |= (1<<0);
 | |
| 				if (j == nv-1) t[3] |= (1<<4);
 | |
| 				tbase++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Store and create BVtree.
 | |
| 	if (params->buildBvTree)
 | |
| 	{
 | |
| 		createBVTree(params, navBvtree, 2*params->polyCount);
 | |
| 	}
 | |
| 	
 | |
| 	// Store Off-Mesh connections.
 | |
| 	n = 0;
 | |
| 	for (int i = 0; i < params->offMeshConCount; ++i)
 | |
| 	{
 | |
| 		// Only store connections which start from this tile.
 | |
| 		if (offMeshConClass[i*2+0] == 0xff)
 | |
| 		{
 | |
| 			dtOffMeshConnection* con = &offMeshCons[n];
 | |
| 			con->poly = (unsigned short)(offMeshPolyBase + n);
 | |
| 			// Copy connection end-points.
 | |
| 			const float* endPts = ¶ms->offMeshConVerts[i*2*3];
 | |
| 			dtVcopy(&con->pos[0], &endPts[0]);
 | |
| 			dtVcopy(&con->pos[3], &endPts[3]);
 | |
| 			con->rad = params->offMeshConRad[i];
 | |
| 			con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0;
 | |
| 			con->side = offMeshConClass[i*2+1];
 | |
| 			if (params->offMeshConUserID)
 | |
| 				con->userId = params->offMeshConUserID[i];
 | |
| 			n++;
 | |
| 		}
 | |
| 	}
 | |
| 		
 | |
| 	dtFree(offMeshConClass);
 | |
| 	
 | |
| 	*outData = data;
 | |
| 	*outDataSize = dataSize;
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/)
 | |
| {
 | |
| 	dtMeshHeader* header = (dtMeshHeader*)data;
 | |
| 	
 | |
| 	int swappedMagic = DT_NAVMESH_MAGIC;
 | |
| 	int swappedVersion = DT_NAVMESH_VERSION;
 | |
| 	dtSwapEndian(&swappedMagic);
 | |
| 	dtSwapEndian(&swappedVersion);
 | |
| 	
 | |
| 	if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) &&
 | |
| 		(header->magic != swappedMagic || header->version != swappedVersion))
 | |
| 	{
 | |
| 		return false;
 | |
| 	}
 | |
| 		
 | |
| 	dtSwapEndian(&header->magic);
 | |
| 	dtSwapEndian(&header->version);
 | |
| 	dtSwapEndian(&header->x);
 | |
| 	dtSwapEndian(&header->y);
 | |
| 	dtSwapEndian(&header->layer);
 | |
| 	dtSwapEndian(&header->userId);
 | |
| 	dtSwapEndian(&header->polyCount);
 | |
| 	dtSwapEndian(&header->vertCount);
 | |
| 	dtSwapEndian(&header->maxLinkCount);
 | |
| 	dtSwapEndian(&header->detailMeshCount);
 | |
| 	dtSwapEndian(&header->detailVertCount);
 | |
| 	dtSwapEndian(&header->detailTriCount);
 | |
| 	dtSwapEndian(&header->bvNodeCount);
 | |
| 	dtSwapEndian(&header->offMeshConCount);
 | |
| 	dtSwapEndian(&header->offMeshBase);
 | |
| 	dtSwapEndian(&header->walkableHeight);
 | |
| 	dtSwapEndian(&header->walkableRadius);
 | |
| 	dtSwapEndian(&header->walkableClimb);
 | |
| 	dtSwapEndian(&header->bmin[0]);
 | |
| 	dtSwapEndian(&header->bmin[1]);
 | |
| 	dtSwapEndian(&header->bmin[2]);
 | |
| 	dtSwapEndian(&header->bmax[0]);
 | |
| 	dtSwapEndian(&header->bmax[1]);
 | |
| 	dtSwapEndian(&header->bmax[2]);
 | |
| 	dtSwapEndian(&header->bvQuantFactor);
 | |
| 
 | |
| 	// Freelist index and pointers are updated when tile is added, no need to swap.
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// @warning This function assumes that the header is in the correct endianess already. 
 | |
| /// Call #dtNavMeshHeaderSwapEndian() first on the data if the data is expected to be in wrong endianess 
 | |
| /// to start with. Call #dtNavMeshHeaderSwapEndian() after the data has been swapped if converting from 
 | |
| /// native to foreign endianess.
 | |
| bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
 | |
| {
 | |
| 	// Make sure the data is in right format.
 | |
| 	dtMeshHeader* header = (dtMeshHeader*)data;
 | |
| 	if (header->magic != DT_NAVMESH_MAGIC)
 | |
| 		return false;
 | |
| 	if (header->version != DT_NAVMESH_VERSION)
 | |
| 		return false;
 | |
| 	
 | |
| 	// Patch header pointers.
 | |
| 	const int headerSize = dtAlign4(sizeof(dtMeshHeader));
 | |
| 	const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount);
 | |
| 	const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount);
 | |
| 	const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount));
 | |
| 	const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount);
 | |
| 	const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount);
 | |
| 	const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount);
 | |
| 	const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount);
 | |
| 	const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
 | |
| 	
 | |
| 	unsigned char* d = data + headerSize;
 | |
| 	float* verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
 | |
| 	dtPoly* polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
 | |
| 	d += linksSize; // Ignore links; they technically should be endian-swapped but all their data is overwritten on load anyway.
 | |
| 	//dtLink* links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize);
 | |
| 	dtPolyDetail* detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
 | |
| 	float* detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
 | |
| 	d += detailTrisSize; // Ignore detail tris; single bytes can't be endian-swapped.
 | |
| 	//unsigned char* detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
 | |
| 	dtBVNode* bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize);
 | |
| 	dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize);
 | |
| 	
 | |
| 	// Vertices
 | |
| 	for (int i = 0; i < header->vertCount*3; ++i)
 | |
| 	{
 | |
| 		dtSwapEndian(&verts[i]);
 | |
| 	}
 | |
| 
 | |
| 	// Polys
 | |
| 	for (int i = 0; i < header->polyCount; ++i)
 | |
| 	{
 | |
| 		dtPoly* p = &polys[i];
 | |
| 		// poly->firstLink is update when tile is added, no need to swap.
 | |
| 		for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j)
 | |
| 		{
 | |
| 			dtSwapEndian(&p->verts[j]);
 | |
| 			dtSwapEndian(&p->neis[j]);
 | |
| 		}
 | |
| 		dtSwapEndian(&p->flags);
 | |
| 	}
 | |
| 
 | |
| 	// Links are rebuild when tile is added, no need to swap.
 | |
| 
 | |
| 	// Detail meshes
 | |
| 	for (int i = 0; i < header->detailMeshCount; ++i)
 | |
| 	{
 | |
| 		dtPolyDetail* pd = &detailMeshes[i];
 | |
| 		dtSwapEndian(&pd->vertBase);
 | |
| 		dtSwapEndian(&pd->triBase);
 | |
| 	}
 | |
| 	
 | |
| 	// Detail verts
 | |
| 	for (int i = 0; i < header->detailVertCount*3; ++i)
 | |
| 	{
 | |
| 		dtSwapEndian(&detailVerts[i]);
 | |
| 	}
 | |
| 
 | |
| 	// BV-tree
 | |
| 	for (int i = 0; i < header->bvNodeCount; ++i)
 | |
| 	{
 | |
| 		dtBVNode* node = &bvTree[i];
 | |
| 		for (int j = 0; j < 3; ++j)
 | |
| 		{
 | |
| 			dtSwapEndian(&node->bmin[j]);
 | |
| 			dtSwapEndian(&node->bmax[j]);
 | |
| 		}
 | |
| 		dtSwapEndian(&node->i);
 | |
| 	}
 | |
| 
 | |
| 	// Off-mesh Connections.
 | |
| 	for (int i = 0; i < header->offMeshConCount; ++i)
 | |
| 	{
 | |
| 		dtOffMeshConnection* con = &offMeshCons[i];
 | |
| 		for (int j = 0; j < 6; ++j)
 | |
| 			dtSwapEndian(&con->pos[j]);
 | |
| 		dtSwapEndian(&con->rad);
 | |
| 		dtSwapEndian(&con->poly);
 | |
| 	}
 | |
| 	
 | |
| 	return true;
 | |
| }
 |