forked from LeenkxTeam/LNXSDK
674 lines
21 KiB
Python
674 lines
21 KiB
Python
import bpy, math, os, gpu, bgl, importlib
|
|
import numpy as np
|
|
from . import utility
|
|
from fractions import Fraction
|
|
from gpu_extras.batch import batch_for_shader
|
|
|
|
def splitLogLuvAlphaAtlas(imageIn, outDir, quality):
|
|
pass
|
|
|
|
def splitLogLuvAlpha(imageIn, outDir, quality):
|
|
|
|
bpy.app.driver_namespace["logman"].append("Starting LogLuv split for: " + str(imageIn))
|
|
|
|
cv2 = importlib.util.find_spec("cv2")
|
|
|
|
if cv2 is None:
|
|
print("CV2 not found - Ignoring filtering")
|
|
return 0
|
|
else:
|
|
cv2 = importlib.__import__("cv2")
|
|
|
|
print(imageIn)
|
|
image = cv2.imread(imageIn, cv2.IMREAD_UNCHANGED)
|
|
#cv2.imshow('image', image)
|
|
split = cv2.split(image)
|
|
merged = cv2.merge([split[0], split[1], split[2]])
|
|
alpha = split[3]
|
|
#b,g,r = cv2.split(image)
|
|
#merged = cv2.merge([b, g, r])
|
|
#alpha = cv2.merge([a,a,a])
|
|
image_name = os.path.basename(imageIn)[:-4]
|
|
#os.path.join(outDir, image_name+"_XYZ.png")
|
|
|
|
cv2.imwrite(os.path.join(outDir, image_name+"_XYZ.png"), merged)
|
|
cv2.imwrite(os.path.join(outDir, image_name+"_W.png"), alpha)
|
|
|
|
def encodeLogLuvGPU(image, outDir, quality):
|
|
|
|
bpy.app.driver_namespace["logman"].append("Starting LogLuv encode for: " + str(image.name))
|
|
|
|
input_image = bpy.data.images[image.name]
|
|
image_name = input_image.name
|
|
|
|
offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
|
|
|
|
image = input_image
|
|
|
|
vertex_shader = '''
|
|
|
|
uniform mat4 ModelViewProjectionMatrix;
|
|
|
|
in vec2 texCoord;
|
|
in vec2 pos;
|
|
out vec2 texCoord_interp;
|
|
|
|
void main()
|
|
{
|
|
//gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
|
|
//gl_Position.z = 1.0;
|
|
gl_Position = vec4(pos.xy, 100, 100);
|
|
texCoord_interp = texCoord;
|
|
}
|
|
|
|
'''
|
|
fragment_shader = '''
|
|
in vec2 texCoord_interp;
|
|
out vec4 fragColor;
|
|
|
|
uniform sampler2D image;
|
|
|
|
const mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );
|
|
vec4 LinearToLogLuv( in vec4 value ) {
|
|
vec3 Xp_Y_XYZp = cLogLuvM * value.rgb;
|
|
Xp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );
|
|
vec4 vResult;
|
|
vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;
|
|
float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;
|
|
vResult.w = fract( Le );
|
|
vResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;
|
|
return vResult;
|
|
//return vec4(Xp_Y_XYZp,1);
|
|
}
|
|
|
|
const mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );
|
|
vec4 LogLuvToLinear( in vec4 value ) {
|
|
float Le = value.z * 255.0 + value.w;
|
|
vec3 Xp_Y_XYZp;
|
|
Xp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );
|
|
Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;
|
|
Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;
|
|
vec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;
|
|
//return vec4( max( vRGB, 0.0 ), 1.0 );
|
|
return vec4( max( Xp_Y_XYZp, 0.0 ), 1.0 );
|
|
}
|
|
|
|
void main()
|
|
{
|
|
//fragColor = LinearToLogLuv(pow(texture(image, texCoord_interp), vec4(0.454)));
|
|
fragColor = LinearToLogLuv(texture(image, texCoord_interp));
|
|
//fragColor = LogLuvToLinear(LinearToLogLuv(texture(image, texCoord_interp)));
|
|
}
|
|
|
|
'''
|
|
|
|
x_screen = 0
|
|
off_x = -100
|
|
off_y = -100
|
|
y_screen_flip = 0
|
|
sx = 200
|
|
sy = 200
|
|
|
|
vertices = (
|
|
(x_screen + off_x, y_screen_flip - off_y),
|
|
(x_screen + off_x, y_screen_flip - sy - off_y),
|
|
(x_screen + off_x + sx, y_screen_flip - sy - off_y),
|
|
(x_screen + off_x + sx, y_screen_flip - off_x))
|
|
|
|
if input_image.colorspace_settings.name != 'Linear':
|
|
input_image.colorspace_settings.name = 'Linear'
|
|
|
|
# Removing .exr or .hdr prefix
|
|
if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
|
|
image_name = image_name[:-4]
|
|
|
|
target_image = bpy.data.images.get(image_name + '_encoded')
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(image_name + '_encoded')
|
|
if not target_image:
|
|
target_image = bpy.data.images.new(
|
|
name = image_name + '_encoded',
|
|
width = input_image.size[0],
|
|
height = input_image.size[1],
|
|
alpha = True,
|
|
float_buffer = False
|
|
)
|
|
|
|
shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
|
|
batch = batch_for_shader(
|
|
shader, 'TRI_FAN',
|
|
{
|
|
"pos": vertices,
|
|
"texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
|
|
},
|
|
)
|
|
|
|
if image.gl_load():
|
|
raise Exception()
|
|
|
|
with offscreen.bind():
|
|
bgl.glActiveTexture(bgl.GL_TEXTURE0)
|
|
bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
|
|
|
|
shader.bind()
|
|
shader.uniform_int("image", 0)
|
|
batch.draw(shader)
|
|
|
|
buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
|
|
bgl.glReadBuffer(bgl.GL_BACK)
|
|
bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
|
|
|
|
offscreen.free()
|
|
|
|
target_image.pixels = [v / 255 for v in buffer]
|
|
input_image = target_image
|
|
|
|
#Save LogLuv
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(input_image.name)
|
|
input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
|
|
#input_image.filepath_raw = outDir + "_encoded.png"
|
|
input_image.file_format = "PNG"
|
|
bpy.context.scene.render.image_settings.quality = quality
|
|
#input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
|
|
input_image.save()
|
|
|
|
def encodeImageRGBDGPU(image, maxRange, outDir, quality):
|
|
input_image = bpy.data.images[image.name]
|
|
image_name = input_image.name
|
|
|
|
offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
|
|
|
|
image = input_image
|
|
|
|
vertex_shader = '''
|
|
|
|
uniform mat4 ModelViewProjectionMatrix;
|
|
|
|
in vec2 texCoord;
|
|
in vec2 pos;
|
|
out vec2 texCoord_interp;
|
|
|
|
void main()
|
|
{
|
|
//gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
|
|
//gl_Position.z = 1.0;
|
|
gl_Position = vec4(pos.xy, 100, 100);
|
|
texCoord_interp = texCoord;
|
|
}
|
|
|
|
'''
|
|
fragment_shader = '''
|
|
in vec2 texCoord_interp;
|
|
out vec4 fragColor;
|
|
|
|
uniform sampler2D image;
|
|
|
|
//Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx
|
|
|
|
const float PI = 3.1415926535897932384626433832795;
|
|
const float HALF_MIN = 5.96046448e-08; // Smallest positive half.
|
|
|
|
const float LinearEncodePowerApprox = 2.2;
|
|
const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox;
|
|
const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722);
|
|
|
|
const float Epsilon = 0.0000001;
|
|
#define saturate(x) clamp(x, 0.0, 1.0)
|
|
|
|
float maxEps(float x) {
|
|
return max(x, Epsilon);
|
|
}
|
|
|
|
float toLinearSpace(float color)
|
|
{
|
|
return pow(color, LinearEncodePowerApprox);
|
|
}
|
|
|
|
vec3 toLinearSpace(vec3 color)
|
|
{
|
|
return pow(color, vec3(LinearEncodePowerApprox));
|
|
}
|
|
|
|
vec4 toLinearSpace(vec4 color)
|
|
{
|
|
return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a);
|
|
}
|
|
|
|
vec3 toGammaSpace(vec3 color)
|
|
{
|
|
return pow(color, vec3(GammaEncodePowerApprox));
|
|
}
|
|
|
|
vec4 toGammaSpace(vec4 color)
|
|
{
|
|
return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a);
|
|
}
|
|
|
|
float toGammaSpace(float color)
|
|
{
|
|
return pow(color, GammaEncodePowerApprox);
|
|
}
|
|
|
|
float square(float value)
|
|
{
|
|
return value * value;
|
|
}
|
|
|
|
// Check if configurable value is needed.
|
|
const float rgbdMaxRange = 255.0;
|
|
|
|
vec4 toRGBD(vec3 color) {
|
|
float maxRGB = maxEps(max(color.r, max(color.g, color.b)));
|
|
float D = max(rgbdMaxRange / maxRGB, 1.);
|
|
D = clamp(floor(D) / 255.0, 0., 1.);
|
|
vec3 rgb = color.rgb * D;
|
|
|
|
// Helps with png quantization.
|
|
rgb = toGammaSpace(rgb);
|
|
|
|
return vec4(rgb, D);
|
|
}
|
|
|
|
vec3 fromRGBD(vec4 rgbd) {
|
|
// Helps with png quantization.
|
|
rgbd.rgb = toLinearSpace(rgbd.rgb);
|
|
|
|
// return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a);
|
|
|
|
return rgbd.rgb / rgbd.a;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
|
|
fragColor = toRGBD(texture(image, texCoord_interp).rgb);
|
|
|
|
}
|
|
|
|
'''
|
|
|
|
x_screen = 0
|
|
off_x = -100
|
|
off_y = -100
|
|
y_screen_flip = 0
|
|
sx = 200
|
|
sy = 200
|
|
|
|
vertices = (
|
|
(x_screen + off_x, y_screen_flip - off_y),
|
|
(x_screen + off_x, y_screen_flip - sy - off_y),
|
|
(x_screen + off_x + sx, y_screen_flip - sy - off_y),
|
|
(x_screen + off_x + sx, y_screen_flip - off_x))
|
|
|
|
if input_image.colorspace_settings.name != 'Linear':
|
|
input_image.colorspace_settings.name = 'Linear'
|
|
|
|
# Removing .exr or .hdr prefix
|
|
if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
|
|
image_name = image_name[:-4]
|
|
|
|
target_image = bpy.data.images.get(image_name + '_encoded')
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(image_name + '_encoded')
|
|
if not target_image:
|
|
target_image = bpy.data.images.new(
|
|
name = image_name + '_encoded',
|
|
width = input_image.size[0],
|
|
height = input_image.size[1],
|
|
alpha = True,
|
|
float_buffer = False
|
|
)
|
|
|
|
shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
|
|
batch = batch_for_shader(
|
|
shader, 'TRI_FAN',
|
|
{
|
|
"pos": vertices,
|
|
"texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
|
|
},
|
|
)
|
|
|
|
if image.gl_load():
|
|
raise Exception()
|
|
|
|
with offscreen.bind():
|
|
bgl.glActiveTexture(bgl.GL_TEXTURE0)
|
|
bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
|
|
|
|
shader.bind()
|
|
shader.uniform_int("image", 0)
|
|
batch.draw(shader)
|
|
|
|
buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
|
|
bgl.glReadBuffer(bgl.GL_BACK)
|
|
bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
|
|
|
|
offscreen.free()
|
|
|
|
target_image.pixels = [v / 255 for v in buffer]
|
|
input_image = target_image
|
|
|
|
#Save LogLuv
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(input_image.name)
|
|
input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
|
|
#input_image.filepath_raw = outDir + "_encoded.png"
|
|
input_image.file_format = "PNG"
|
|
bpy.context.scene.render.image_settings.quality = quality
|
|
#input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
|
|
input_image.save()
|
|
|
|
#Todo - Find a way to save
|
|
#bpy.ops.image.save_all_modified()
|
|
|
|
#TODO - FINISH THIS
|
|
def encodeImageRGBMGPU(image, maxRange, outDir, quality):
|
|
input_image = bpy.data.images[image.name]
|
|
image_name = input_image.name
|
|
|
|
offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
|
|
|
|
image = input_image
|
|
|
|
vertex_shader = '''
|
|
|
|
uniform mat4 ModelViewProjectionMatrix;
|
|
|
|
in vec2 texCoord;
|
|
in vec2 pos;
|
|
out vec2 texCoord_interp;
|
|
|
|
void main()
|
|
{
|
|
//gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
|
|
//gl_Position.z = 1.0;
|
|
gl_Position = vec4(pos.xy, 100, 100);
|
|
texCoord_interp = texCoord;
|
|
}
|
|
|
|
'''
|
|
fragment_shader = '''
|
|
in vec2 texCoord_interp;
|
|
out vec4 fragColor;
|
|
|
|
uniform sampler2D image;
|
|
|
|
//Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx
|
|
|
|
const float PI = 3.1415926535897932384626433832795;
|
|
const float HALF_MIN = 5.96046448e-08; // Smallest positive half.
|
|
|
|
const float LinearEncodePowerApprox = 2.2;
|
|
const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox;
|
|
const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722);
|
|
|
|
const float Epsilon = 0.0000001;
|
|
#define saturate(x) clamp(x, 0.0, 1.0)
|
|
|
|
float maxEps(float x) {
|
|
return max(x, Epsilon);
|
|
}
|
|
|
|
float toLinearSpace(float color)
|
|
{
|
|
return pow(color, LinearEncodePowerApprox);
|
|
}
|
|
|
|
vec3 toLinearSpace(vec3 color)
|
|
{
|
|
return pow(color, vec3(LinearEncodePowerApprox));
|
|
}
|
|
|
|
vec4 toLinearSpace(vec4 color)
|
|
{
|
|
return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a);
|
|
}
|
|
|
|
vec3 toGammaSpace(vec3 color)
|
|
{
|
|
return pow(color, vec3(GammaEncodePowerApprox));
|
|
}
|
|
|
|
vec4 toGammaSpace(vec4 color)
|
|
{
|
|
return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a);
|
|
}
|
|
|
|
float toGammaSpace(float color)
|
|
{
|
|
return pow(color, GammaEncodePowerApprox);
|
|
}
|
|
|
|
float square(float value)
|
|
{
|
|
return value * value;
|
|
}
|
|
|
|
// Check if configurable value is needed.
|
|
const float rgbdMaxRange = 255.0;
|
|
|
|
vec4 toRGBM(vec3 color) {
|
|
|
|
vec4 rgbm;
|
|
color *= 1.0/6.0;
|
|
rgbm.a = saturate( max( max( color.r, color.g ), max( color.b, 1e-6 ) ) );
|
|
rgbm.a = clamp(floor(D) / 255.0, 0., 1.);
|
|
rgbm.rgb = color / rgbm.a;
|
|
|
|
return
|
|
|
|
float maxRGB = maxEps(max(color.r, max(color.g, color.b)));
|
|
float D = max(rgbdMaxRange / maxRGB, 1.);
|
|
D = clamp(floor(D) / 255.0, 0., 1.);
|
|
vec3 rgb = color.rgb * D;
|
|
|
|
// Helps with png quantization.
|
|
rgb = toGammaSpace(rgb);
|
|
|
|
return vec4(rgb, D);
|
|
}
|
|
|
|
vec3 fromRGBD(vec4 rgbd) {
|
|
// Helps with png quantization.
|
|
rgbd.rgb = toLinearSpace(rgbd.rgb);
|
|
|
|
// return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a);
|
|
|
|
return rgbd.rgb / rgbd.a;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
|
|
fragColor = toRGBM(texture(image, texCoord_interp).rgb);
|
|
|
|
}
|
|
|
|
'''
|
|
|
|
x_screen = 0
|
|
off_x = -100
|
|
off_y = -100
|
|
y_screen_flip = 0
|
|
sx = 200
|
|
sy = 200
|
|
|
|
vertices = (
|
|
(x_screen + off_x, y_screen_flip - off_y),
|
|
(x_screen + off_x, y_screen_flip - sy - off_y),
|
|
(x_screen + off_x + sx, y_screen_flip - sy - off_y),
|
|
(x_screen + off_x + sx, y_screen_flip - off_x))
|
|
|
|
if input_image.colorspace_settings.name != 'Linear':
|
|
input_image.colorspace_settings.name = 'Linear'
|
|
|
|
# Removing .exr or .hdr prefix
|
|
if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
|
|
image_name = image_name[:-4]
|
|
|
|
target_image = bpy.data.images.get(image_name + '_encoded')
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(image_name + '_encoded')
|
|
if not target_image:
|
|
target_image = bpy.data.images.new(
|
|
name = image_name + '_encoded',
|
|
width = input_image.size[0],
|
|
height = input_image.size[1],
|
|
alpha = True,
|
|
float_buffer = False
|
|
)
|
|
|
|
shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
|
|
batch = batch_for_shader(
|
|
shader, 'TRI_FAN',
|
|
{
|
|
"pos": vertices,
|
|
"texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
|
|
},
|
|
)
|
|
|
|
if image.gl_load():
|
|
raise Exception()
|
|
|
|
with offscreen.bind():
|
|
bgl.glActiveTexture(bgl.GL_TEXTURE0)
|
|
bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
|
|
|
|
shader.bind()
|
|
shader.uniform_int("image", 0)
|
|
batch.draw(shader)
|
|
|
|
buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
|
|
bgl.glReadBuffer(bgl.GL_BACK)
|
|
bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
|
|
|
|
offscreen.free()
|
|
|
|
target_image.pixels = [v / 255 for v in buffer]
|
|
input_image = target_image
|
|
|
|
#Save LogLuv
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(input_image.name)
|
|
input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
|
|
#input_image.filepath_raw = outDir + "_encoded.png"
|
|
input_image.file_format = "PNG"
|
|
bpy.context.scene.render.image_settings.quality = quality
|
|
#input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
|
|
input_image.save()
|
|
|
|
#Todo - Find a way to save
|
|
#bpy.ops.image.save_all_modified()
|
|
|
|
def encodeImageRGBMCPU(image, maxRange, outDir, quality):
|
|
input_image = bpy.data.images[image.name]
|
|
image_name = input_image.name
|
|
|
|
if input_image.colorspace_settings.name != 'Linear':
|
|
input_image.colorspace_settings.name = 'Linear'
|
|
|
|
# Removing .exr or .hdr prefix
|
|
if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
|
|
image_name = image_name[:-4]
|
|
|
|
target_image = bpy.data.images.get(image_name + '_encoded')
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(image_name + '_encoded')
|
|
if not target_image:
|
|
target_image = bpy.data.images.new(
|
|
name = image_name + '_encoded',
|
|
width = input_image.size[0],
|
|
height = input_image.size[1],
|
|
alpha = True,
|
|
float_buffer = False
|
|
)
|
|
|
|
num_pixels = len(input_image.pixels)
|
|
result_pixel = list(input_image.pixels)
|
|
|
|
for i in range(0,num_pixels,4):
|
|
for j in range(3):
|
|
result_pixel[i+j] *= 1.0 / maxRange;
|
|
result_pixel[i+3] = saturate(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2], 1e-6))
|
|
result_pixel[i+3] = math.ceil(result_pixel[i+3] * 255.0) / 255.0
|
|
for j in range(3):
|
|
result_pixel[i+j] /= result_pixel[i+3]
|
|
|
|
target_image.pixels = result_pixel
|
|
input_image = target_image
|
|
|
|
#Save RGBM
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(input_image.name)
|
|
input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
|
|
input_image.file_format = "PNG"
|
|
bpy.context.scene.render.image_settings.quality = quality
|
|
input_image.save()
|
|
|
|
#input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
|
|
# input_image.filepath_raw = outDir + "_encoded.png"
|
|
# input_image.file_format = "PNG"
|
|
# bpy.context.scene.render.image_settings.quality = quality
|
|
# input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
|
|
#input_image.
|
|
#input_image.save()
|
|
|
|
def saturate(num, floats=True):
|
|
if num <= 0:
|
|
num = 0
|
|
elif num > (1 if floats else 255):
|
|
num = (1 if floats else 255)
|
|
return num
|
|
|
|
def maxEps(x):
|
|
return max(x, 1e-6)
|
|
|
|
def encodeImageRGBDCPU(image, maxRange, outDir, quality):
|
|
input_image = bpy.data.images[image.name]
|
|
image_name = input_image.name
|
|
|
|
if input_image.colorspace_settings.name != 'Linear':
|
|
input_image.colorspace_settings.name = 'Linear'
|
|
|
|
# Removing .exr or .hdr prefix
|
|
if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
|
|
image_name = image_name[:-4]
|
|
|
|
target_image = bpy.data.images.get(image_name + '_encoded')
|
|
if not target_image:
|
|
target_image = bpy.data.images.new(
|
|
name = image_name + '_encoded',
|
|
width = input_image.size[0],
|
|
height = input_image.size[1],
|
|
alpha = True,
|
|
float_buffer = False
|
|
)
|
|
|
|
num_pixels = len(input_image.pixels)
|
|
result_pixel = list(input_image.pixels)
|
|
|
|
rgbdMaxRange = 255.0
|
|
|
|
for i in range(0,num_pixels,4):
|
|
|
|
maxRGB = maxEps(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2]))
|
|
D = max(rgbdMaxRange/maxRGB, 1.0)
|
|
D = np.clip((math.floor(D) / 255.0), 0.0, 1.0)
|
|
|
|
result_pixel[i] = math.pow(result_pixel[i] * D, 1/2.2)
|
|
result_pixel[i+1] = math.pow(result_pixel[i+1] * D, 1/2.2)
|
|
result_pixel[i+2] = math.pow(result_pixel[i+2] * D, 1/2.2)
|
|
result_pixel[i+3] = D
|
|
|
|
target_image.pixels = result_pixel
|
|
|
|
input_image = target_image
|
|
|
|
#Save RGBD
|
|
if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
|
|
print(input_image.name)
|
|
input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
|
|
input_image.file_format = "PNG"
|
|
bpy.context.scene.render.image_settings.quality = quality
|
|
input_image.save() |