forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			GLSL
		
	
	
	
	
	
/* Various sky functions
 | 
						|
 * =====================
 | 
						|
 *
 | 
						|
 * Nishita model is based on https://github.com/wwwtyro/glsl-atmosphere (Unlicense License)
 | 
						|
 *
 | 
						|
 *   Changes to the original implementation:
 | 
						|
 *     - r and pSun parameters of nishita_atmosphere() are already normalized
 | 
						|
 *     - Some original parameters of nishita_atmosphere() are replaced with pre-defined values
 | 
						|
 *     - Implemented air, dust and ozone density node parameters (see Blender source)
 | 
						|
 *     - Replaced the inner integral calculation with a LUT lookup
 | 
						|
 *
 | 
						|
 * Reference for the sun's limb darkening and ozone calculations:
 | 
						|
 * [Hill] Sebastien Hillaire. Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite
 | 
						|
 * (https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-frostbite-sky-clouds-new.pdf)
 | 
						|
 *
 | 
						|
 * Cycles code used for reference: blender/intern/sky/source/sky_nishita.cpp
 | 
						|
 * (https://github.com/blender/blender/blob/4429b4b77ef6754739a3c2b4fabd0537999e9bdc/intern/sky/source/sky_nishita.cpp)
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef _SKY_GLSL_
 | 
						|
#define _SKY_GLSL_
 | 
						|
 | 
						|
#include "std/math.glsl"
 | 
						|
 | 
						|
uniform sampler2D nishitaLUT;
 | 
						|
uniform vec2 nishitaDensity;
 | 
						|
 | 
						|
#ifndef PI
 | 
						|
	#define PI 3.141592
 | 
						|
#endif
 | 
						|
#ifndef HALF_PI
 | 
						|
	#define HALF_PI 1.570796
 | 
						|
#endif
 | 
						|
 | 
						|
#define nishita_iSteps 16
 | 
						|
 | 
						|
// These values are taken from Cycles code if they
 | 
						|
// exist there, otherwise they are taken from the example
 | 
						|
// in the glsl-atmosphere repo
 | 
						|
#define nishita_sun_intensity 22.0
 | 
						|
#define nishita_atmo_radius 6420e3
 | 
						|
#define nishita_rayleigh_scale 8e3
 | 
						|
#define nishita_rayleigh_coeff vec3(5.5e-6, 13.0e-6, 22.4e-6)
 | 
						|
#define nishita_mie_scale 1.2e3
 | 
						|
#define nishita_mie_coeff 2e-5
 | 
						|
#define nishita_mie_dir 0.76 // Aerosols anisotropy ("direction")
 | 
						|
#define nishita_mie_dir_sq 0.5776 // Squared aerosols anisotropy
 | 
						|
 | 
						|
// Values from [Hill: 60]
 | 
						|
#define sun_limb_darkening_col vec3(0.397, 0.503, 0.652)
 | 
						|
 | 
						|
vec3 nishita_lookupLUT(const float height, const float sunTheta) {
 | 
						|
	vec2 coords = vec2(
 | 
						|
		sqrt(height * (1 / nishita_atmo_radius)),
 | 
						|
		0.5 + 0.5 * sign(sunTheta - HALF_PI) * sqrt(abs(sunTheta * (1 / HALF_PI) - 1))
 | 
						|
	);
 | 
						|
	return textureLod(nishitaLUT, coords, 0.0).rgb;
 | 
						|
}
 | 
						|
 | 
						|
/* See raySphereIntersection() in leenkx/Sources/renderpath/Nishita.hx */
 | 
						|
vec2 nishita_rsi(const vec3 r0, const vec3 rd, const float sr) {
 | 
						|
	float a = dot(rd, rd);
 | 
						|
	float b = 2.0 * dot(rd, r0);
 | 
						|
	float c = dot(r0, r0) - (sr * sr);
 | 
						|
	float d = (b*b) - 4.0*a*c;
 | 
						|
 | 
						|
	// If d < 0.0 the ray does not intersect the sphere
 | 
						|
	return (d < 0.0) ? vec2(1e5,-1e5) : vec2((-b - sqrt(d))/(2.0*a), (-b + sqrt(d))/(2.0*a));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * r: normalized ray direction
 | 
						|
 * r0: ray origin
 | 
						|
 * pSun: normalized sun direction
 | 
						|
 * rPlanet: planet radius
 | 
						|
 */
 | 
						|
vec3 nishita_atmosphere(const vec3 r, const vec3 r0, const vec3 pSun, const float rPlanet) {
 | 
						|
	// Calculate the step size of the primary ray
 | 
						|
	vec2 p = nishita_rsi(r0, r, nishita_atmo_radius);
 | 
						|
	if (p.x > p.y) return vec3(0.0);
 | 
						|
	p.y = min(p.y, nishita_rsi(r0, r, rPlanet).x);
 | 
						|
	float iStepSize = (p.y - p.x) / float(nishita_iSteps);
 | 
						|
 | 
						|
	// Primary ray time
 | 
						|
	float iTime = 0.0;
 | 
						|
 | 
						|
	// Accumulators for Rayleigh and Mie scattering.
 | 
						|
	vec3 totalRlh = vec3(0,0,0);
 | 
						|
	vec3 totalMie = vec3(0,0,0);
 | 
						|
 | 
						|
	// Optical depth accumulators for the primary ray
 | 
						|
	float iOdRlh = 0.0;
 | 
						|
	float iOdMie = 0.0;
 | 
						|
 | 
						|
	// Calculate the Rayleigh and Mie phases
 | 
						|
	float mu = dot(r, pSun);
 | 
						|
	float mumu = mu * mu;
 | 
						|
	float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu);
 | 
						|
	float pMie = 3.0 / (8.0 * PI) * ((1.0 - nishita_mie_dir_sq) * (mumu + 1.0)) / (pow(1.0 + nishita_mie_dir_sq - 2.0 * mu * nishita_mie_dir, 1.5) * (2.0 + nishita_mie_dir_sq));
 | 
						|
 | 
						|
	// Sample the primary ray
 | 
						|
	for (int i = 0; i < nishita_iSteps; i++) {
 | 
						|
 | 
						|
		// Calculate the primary ray sample position and height
 | 
						|
		vec3 iPos = r0 + r * (iTime + iStepSize * 0.5);
 | 
						|
		float iHeight = length(iPos) - rPlanet;
 | 
						|
 | 
						|
		// Calculate the optical depth of the Rayleigh and Mie scattering for this step
 | 
						|
		float odStepRlh = exp(-iHeight / nishita_rayleigh_scale) * nishitaDensity.x * iStepSize;
 | 
						|
		float odStepMie = exp(-iHeight / nishita_mie_scale) * nishitaDensity.y * iStepSize;
 | 
						|
 | 
						|
		// Accumulate optical depth
 | 
						|
		iOdRlh += odStepRlh;
 | 
						|
		iOdMie += odStepMie;
 | 
						|
 | 
						|
		// Idea behind this: "Rotate" everything by iPos (-> iPos is the new zenith) and then all calculations for the
 | 
						|
		// inner integral only depend on the sample height (iHeight) and sunTheta (angle between sun and new zenith).
 | 
						|
		float sunTheta = safe_acos(dot(normalize(iPos), normalize(pSun)));
 | 
						|
		vec3 jAttn = nishita_lookupLUT(iHeight, sunTheta);
 | 
						|
 | 
						|
		// Calculate attenuation
 | 
						|
		vec3 iAttn = exp(-(
 | 
						|
			nishita_mie_coeff * iOdMie
 | 
						|
			+ nishita_rayleigh_coeff * iOdRlh
 | 
						|
			// + 0 for ozone
 | 
						|
		));
 | 
						|
		vec3 attn = iAttn * jAttn;
 | 
						|
 | 
						|
		// Apply dithering to reduce visible banding
 | 
						|
		attn *= 0.98 + rand(r.xy) * 0.04;
 | 
						|
 | 
						|
		// Accumulate scattering
 | 
						|
		totalRlh += odStepRlh * attn;
 | 
						|
		totalMie += odStepMie * attn;
 | 
						|
 | 
						|
		iTime += iStepSize;
 | 
						|
	}
 | 
						|
 | 
						|
	return nishita_sun_intensity * (pRlh * nishita_rayleigh_coeff * totalRlh + pMie * nishita_mie_coeff * totalMie);
 | 
						|
}
 | 
						|
 | 
						|
vec3 sun_disk(const vec3 n, const vec3 light_dir, const float disk_size, const float intensity) {
 | 
						|
	// Normalized SDF
 | 
						|
	float dist = distance(n, light_dir) / disk_size;
 | 
						|
 | 
						|
	// Darken the edges of the sun
 | 
						|
	// [Hill: 28, 60] (according to [Nec96])
 | 
						|
	float invDist = 1.0 - dist;
 | 
						|
	float mu = sqrt(invDist * invDist);
 | 
						|
	vec3 limb_darkening = 1.0 - (1.0 - pow(vec3(mu), sun_limb_darkening_col));
 | 
						|
 | 
						|
	return 1 + (1.0 - step(1.0, dist)) * nishita_sun_intensity * intensity * limb_darkening;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |