forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			243 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include "btConvex2dConvex2dAlgorithm.h"
 | |
| 
 | |
| //#include <stdio.h>
 | |
| #include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
 | |
| #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
 | |
| #include "BulletCollision/CollisionShapes/btConvexShape.h"
 | |
| #include "BulletCollision/CollisionShapes/btCapsuleShape.h"
 | |
| 
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
 | |
| #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
 | |
| #include "BulletCollision/CollisionShapes/btBoxShape.h"
 | |
| #include "BulletCollision/CollisionDispatch/btManifoldResult.h"
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
 | |
| 
 | |
| 
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
 | |
| #include "BulletCollision/CollisionShapes/btSphereShape.h"
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
 | |
| 
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
 | |
| #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
 | |
| 
 | |
| btConvex2dConvex2dAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface*			simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
 | |
| {
 | |
| 	m_simplexSolver = simplexSolver;
 | |
| 	m_pdSolver = pdSolver;
 | |
| }
 | |
| 
 | |
| btConvex2dConvex2dAlgorithm::CreateFunc::~CreateFunc() 
 | |
| { 
 | |
| }
 | |
| 
 | |
| btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int /* numPerturbationIterations */, int /* minimumPointsPerturbationThreshold */)
 | |
| : btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap),
 | |
| m_simplexSolver(simplexSolver),
 | |
| m_pdSolver(pdSolver),
 | |
| m_ownManifold (false),
 | |
| m_manifoldPtr(mf),
 | |
| m_lowLevelOfDetail(false)
 | |
| {
 | |
| 	(void)body0Wrap;
 | |
| 	(void)body1Wrap;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btConvex2dConvex2dAlgorithm::~btConvex2dConvex2dAlgorithm()
 | |
| {
 | |
| 	if (m_ownManifold)
 | |
| 	{
 | |
| 		if (m_manifoldPtr)
 | |
| 			m_dispatcher->releaseManifold(m_manifoldPtr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void	btConvex2dConvex2dAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
 | |
| {
 | |
| 	m_lowLevelOfDetail = useLowLevel;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| extern btScalar gContactBreakingThreshold;
 | |
| 
 | |
| 
 | |
| //
 | |
| // Convex-Convex collision algorithm
 | |
| //
 | |
| void btConvex2dConvex2dAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
 | |
| {
 | |
| 
 | |
| 	if (!m_manifoldPtr)
 | |
| 	{
 | |
| 		//swapped?
 | |
| 		m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject());
 | |
| 		m_ownManifold = true;
 | |
| 	}
 | |
| 	resultOut->setPersistentManifold(m_manifoldPtr);
 | |
| 
 | |
| 	//comment-out next line to test multi-contact generation
 | |
| 	//resultOut->getPersistentManifold()->clearManifold();
 | |
| 
 | |
| 
 | |
| 	const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
 | |
| 	const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
 | |
| 
 | |
| 	btVector3  normalOnB;
 | |
| 	btVector3  pointOnBWorld;
 | |
| 
 | |
| 	{
 | |
| 
 | |
| 
 | |
| 		btGjkPairDetector::ClosestPointInput input;
 | |
| 
 | |
| 		btGjkPairDetector	gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
 | |
| 		//TODO: if (dispatchInfo.m_useContinuous)
 | |
| 		gjkPairDetector.setMinkowskiA(min0);
 | |
| 		gjkPairDetector.setMinkowskiB(min1);
 | |
| 
 | |
| 		{
 | |
| 			input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
 | |
| 			input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
 | |
| 		}
 | |
| 
 | |
| 		input.m_transformA = body0Wrap->getWorldTransform();
 | |
| 		input.m_transformB = body1Wrap->getWorldTransform();
 | |
| 
 | |
| 		gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
 | |
| 
 | |
| 		btVector3 v0,v1;
 | |
| 		btVector3 sepNormalWorldSpace;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (m_ownManifold)
 | |
| 	{
 | |
| 		resultOut->refreshContactPoints();
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar	btConvex2dConvex2dAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
 | |
| {
 | |
| 	(void)resultOut;
 | |
| 	(void)dispatchInfo;
 | |
| 	///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
 | |
| 
 | |
| 	///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
 | |
| 	///col0->m_worldTransform,
 | |
| 	btScalar resultFraction = btScalar(1.);
 | |
| 
 | |
| 
 | |
| 	btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
 | |
| 	btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
 | |
| 
 | |
| 	if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
 | |
| 		squareMot1 < col1->getCcdSquareMotionThreshold())
 | |
| 		return resultFraction;
 | |
| 
 | |
| 
 | |
| 	//An adhoc way of testing the Continuous Collision Detection algorithms
 | |
| 	//One object is approximated as a sphere, to simplify things
 | |
| 	//Starting in penetration should report no time of impact
 | |
| 	//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
 | |
| 	//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
 | |
| 
 | |
| 
 | |
| 	/// Convex0 against sphere for Convex1
 | |
| 	{
 | |
| 		btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
 | |
| 
 | |
| 		btSphereShape	sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | |
| 		btConvexCast::CastResult result;
 | |
| 		btVoronoiSimplexSolver voronoiSimplex;
 | |
| 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | |
| 		///Simplification, one object is simplified as a sphere
 | |
| 		btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
 | |
| 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | |
| 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
 | |
| 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
 | |
| 		{
 | |
| 
 | |
| 			//store result.m_fraction in both bodies
 | |
| 
 | |
| 			if (col0->getHitFraction()> result.m_fraction)
 | |
| 				col0->setHitFraction( result.m_fraction );
 | |
| 
 | |
| 			if (col1->getHitFraction() > result.m_fraction)
 | |
| 				col1->setHitFraction( result.m_fraction);
 | |
| 
 | |
| 			if (resultFraction > result.m_fraction)
 | |
| 				resultFraction = result.m_fraction;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/// Sphere (for convex0) against Convex1
 | |
| 	{
 | |
| 		btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
 | |
| 
 | |
| 		btSphereShape	sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
 | |
| 		btConvexCast::CastResult result;
 | |
| 		btVoronoiSimplexSolver voronoiSimplex;
 | |
| 		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
 | |
| 		///Simplification, one object is simplified as a sphere
 | |
| 		btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
 | |
| 		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
 | |
| 		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
 | |
| 			col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
 | |
| 		{
 | |
| 
 | |
| 			//store result.m_fraction in both bodies
 | |
| 
 | |
| 			if (col0->getHitFraction()	> result.m_fraction)
 | |
| 				col0->setHitFraction( result.m_fraction);
 | |
| 
 | |
| 			if (col1->getHitFraction() > result.m_fraction)
 | |
| 				col1->setHitFraction( result.m_fraction);
 | |
| 
 | |
| 			if (resultFraction > result.m_fraction)
 | |
| 				resultFraction = result.m_fraction;
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return resultFraction;
 | |
| 
 | |
| }
 | |
| 
 |