forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			680 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			680 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it freely,
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| /*
 | |
| 2014 May: btGeneric6DofSpring2Constraint is created from the original (2.82.2712) btGeneric6DofConstraint by Gabor Puhr and Tamas Umenhoffer
 | |
| Pros:
 | |
| - Much more accurate and stable in a lot of situation. (Especially when a sleeping chain of RBs connected with 6dof2 is pulled)
 | |
| - Stable and accurate spring with minimal energy loss that works with all of the solvers. (latter is not true for the original 6dof spring)
 | |
| - Servo motor functionality
 | |
| - Much more accurate bouncing. 0 really means zero bouncing (not true for the original 6odf) and there is only a minimal energy loss when the value is 1 (because of the solvers' precision)
 | |
| - Rotation order for the Euler system can be set. (One axis' freedom is still limited to pi/2)
 | |
| 
 | |
| Cons:
 | |
| - It is slower than the original 6dof. There is no exact ratio, but half speed is a good estimation.
 | |
| - At bouncing the correct velocity is calculated, but not the correct position. (it is because of the solver can correct position or velocity, but not both.)
 | |
| */
 | |
| 
 | |
| /// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
 | |
| /// Added support for generic constraint solver through getInfo1/getInfo2 methods
 | |
| 
 | |
| /*
 | |
| 2007-09-09
 | |
| btGeneric6DofConstraint Refactored by Francisco Le?n
 | |
| email: projectileman@yahoo.com
 | |
| http://gimpact.sf.net
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef BT_GENERIC_6DOF_CONSTRAINT2_H
 | |
| #define BT_GENERIC_6DOF_CONSTRAINT2_H
 | |
| 
 | |
| #include "LinearMath/btVector3.h"
 | |
| #include "btJacobianEntry.h"
 | |
| #include "btTypedConstraint.h"
 | |
| 
 | |
| class btRigidBody;
 | |
| 
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| #define btGeneric6DofSpring2ConstraintData2		btGeneric6DofSpring2ConstraintDoubleData2
 | |
| #define btGeneric6DofSpring2ConstraintDataName	"btGeneric6DofSpring2ConstraintDoubleData2"
 | |
| #else
 | |
| #define btGeneric6DofSpring2ConstraintData2		btGeneric6DofSpring2ConstraintData
 | |
| #define btGeneric6DofSpring2ConstraintDataName	"btGeneric6DofSpring2ConstraintData"
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 
 | |
| enum RotateOrder
 | |
| {
 | |
| 	RO_XYZ=0,
 | |
| 	RO_XZY,
 | |
| 	RO_YXZ,
 | |
| 	RO_YZX,
 | |
| 	RO_ZXY,
 | |
| 	RO_ZYX
 | |
| };
 | |
| 
 | |
| class btRotationalLimitMotor2
 | |
| {
 | |
| public:
 | |
| // upper < lower means free
 | |
| // upper == lower means locked
 | |
| // upper > lower means limited
 | |
| 	btScalar m_loLimit;
 | |
| 	btScalar m_hiLimit;
 | |
| 	btScalar m_bounce;
 | |
| 	btScalar m_stopERP;
 | |
| 	btScalar m_stopCFM;
 | |
| 	btScalar m_motorERP;
 | |
| 	btScalar m_motorCFM;
 | |
| 	bool     m_enableMotor;
 | |
| 	btScalar m_targetVelocity;
 | |
| 	btScalar m_maxMotorForce;
 | |
| 	bool     m_servoMotor;
 | |
| 	btScalar m_servoTarget;
 | |
| 	bool     m_enableSpring;
 | |
| 	btScalar m_springStiffness;
 | |
| 	bool     m_springStiffnessLimited;
 | |
| 	btScalar m_springDamping;
 | |
| 	bool     m_springDampingLimited;
 | |
| 	btScalar m_equilibriumPoint;
 | |
| 
 | |
| 	btScalar m_currentLimitError;
 | |
| 	btScalar m_currentLimitErrorHi;
 | |
| 	btScalar m_currentPosition;
 | |
| 	int      m_currentLimit;
 | |
| 
 | |
| 	btRotationalLimitMotor2()
 | |
| 	{
 | |
| 		m_loLimit                = 1.0f;
 | |
| 		m_hiLimit                = -1.0f;
 | |
| 		m_bounce                 = 0.0f;
 | |
| 		m_stopERP                = 0.2f;
 | |
| 		m_stopCFM                = 0.f;
 | |
| 		m_motorERP               = 0.9f;
 | |
| 		m_motorCFM               = 0.f;
 | |
| 		m_enableMotor            = false;
 | |
| 		m_targetVelocity         = 0;
 | |
| 		m_maxMotorForce          = 0.1f;
 | |
| 		m_servoMotor             = false;
 | |
| 		m_servoTarget            = 0;
 | |
| 		m_enableSpring           = false;
 | |
| 		m_springStiffness        = 0;
 | |
| 		m_springStiffnessLimited = false;
 | |
| 		m_springDamping          = 0;
 | |
| 		m_springDampingLimited   = false;
 | |
| 		m_equilibriumPoint       = 0;
 | |
| 
 | |
| 		m_currentLimitError   = 0;
 | |
| 		m_currentLimitErrorHi = 0;
 | |
| 		m_currentPosition     = 0;
 | |
| 		m_currentLimit        = 0;
 | |
| 	}
 | |
| 
 | |
| 	btRotationalLimitMotor2(const btRotationalLimitMotor2 & limot)
 | |
| 	{
 | |
| 		m_loLimit                = limot.m_loLimit;
 | |
| 		m_hiLimit                = limot.m_hiLimit;
 | |
| 		m_bounce                 = limot.m_bounce;
 | |
| 		m_stopERP                = limot.m_stopERP;
 | |
| 		m_stopCFM                = limot.m_stopCFM;
 | |
| 		m_motorERP               = limot.m_motorERP;
 | |
| 		m_motorCFM               = limot.m_motorCFM;
 | |
| 		m_enableMotor            = limot.m_enableMotor;
 | |
| 		m_targetVelocity         = limot.m_targetVelocity;
 | |
| 		m_maxMotorForce          = limot.m_maxMotorForce;
 | |
| 		m_servoMotor             = limot.m_servoMotor;
 | |
| 		m_servoTarget            = limot.m_servoTarget;
 | |
| 		m_enableSpring           = limot.m_enableSpring;
 | |
| 		m_springStiffness        = limot.m_springStiffness;
 | |
| 		m_springStiffnessLimited = limot.m_springStiffnessLimited;
 | |
| 		m_springDamping          = limot.m_springDamping;
 | |
| 		m_springDampingLimited   = limot.m_springDampingLimited;
 | |
| 		m_equilibriumPoint       = limot.m_equilibriumPoint;
 | |
| 
 | |
| 		m_currentLimitError   = limot.m_currentLimitError;
 | |
| 		m_currentLimitErrorHi = limot.m_currentLimitErrorHi;
 | |
| 		m_currentPosition     = limot.m_currentPosition;
 | |
| 		m_currentLimit        = limot.m_currentLimit;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	bool isLimited()
 | |
| 	{
 | |
| 		if(m_loLimit > m_hiLimit) return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	void testLimitValue(btScalar test_value);
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| class btTranslationalLimitMotor2
 | |
| {
 | |
| public:
 | |
| // upper < lower means free
 | |
| // upper == lower means locked
 | |
| // upper > lower means limited
 | |
| 	btVector3 m_lowerLimit;
 | |
| 	btVector3 m_upperLimit;
 | |
| 	btVector3 m_bounce;
 | |
| 	btVector3 m_stopERP;
 | |
| 	btVector3 m_stopCFM;
 | |
| 	btVector3 m_motorERP;
 | |
| 	btVector3 m_motorCFM;
 | |
| 	bool      m_enableMotor[3];
 | |
| 	bool      m_servoMotor[3];
 | |
| 	bool      m_enableSpring[3];
 | |
| 	btVector3 m_servoTarget;
 | |
| 	btVector3 m_springStiffness;
 | |
| 	bool      m_springStiffnessLimited[3];
 | |
| 	btVector3 m_springDamping;
 | |
| 	bool      m_springDampingLimited[3];
 | |
| 	btVector3 m_equilibriumPoint;
 | |
| 	btVector3 m_targetVelocity;
 | |
| 	btVector3 m_maxMotorForce;
 | |
| 
 | |
| 	btVector3 m_currentLimitError;
 | |
| 	btVector3 m_currentLimitErrorHi;
 | |
| 	btVector3 m_currentLinearDiff;
 | |
| 	int       m_currentLimit[3];
 | |
| 
 | |
| 	btTranslationalLimitMotor2()
 | |
| 	{
 | |
| 		m_lowerLimit         .setValue(0.f , 0.f , 0.f );
 | |
| 		m_upperLimit         .setValue(0.f , 0.f , 0.f );
 | |
| 		m_bounce             .setValue(0.f , 0.f , 0.f );
 | |
| 		m_stopERP            .setValue(0.2f, 0.2f, 0.2f);
 | |
| 		m_stopCFM            .setValue(0.f , 0.f , 0.f );
 | |
| 		m_motorERP           .setValue(0.9f, 0.9f, 0.9f);
 | |
| 		m_motorCFM           .setValue(0.f , 0.f , 0.f );
 | |
| 
 | |
| 		m_currentLimitError  .setValue(0.f , 0.f , 0.f );
 | |
| 		m_currentLimitErrorHi.setValue(0.f , 0.f , 0.f );
 | |
| 		m_currentLinearDiff  .setValue(0.f , 0.f , 0.f );
 | |
| 
 | |
| 		for(int i=0; i < 3; i++) 
 | |
| 		{
 | |
| 			m_enableMotor[i]            = false;
 | |
| 			m_servoMotor[i]             = false;
 | |
| 			m_enableSpring[i]           = false;
 | |
| 			m_servoTarget[i]            = btScalar(0.f);
 | |
| 			m_springStiffness[i]        = btScalar(0.f);
 | |
| 			m_springStiffnessLimited[i] = false;
 | |
| 			m_springDamping[i]          = btScalar(0.f);
 | |
| 			m_springDampingLimited[i]   = false;
 | |
| 			m_equilibriumPoint[i]       = btScalar(0.f);
 | |
| 			m_targetVelocity[i]         = btScalar(0.f);
 | |
| 			m_maxMotorForce[i]          = btScalar(0.f);
 | |
| 			
 | |
| 			m_currentLimit[i]     = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btTranslationalLimitMotor2(const btTranslationalLimitMotor2 & other )
 | |
| 	{
 | |
| 		m_lowerLimit          = other.m_lowerLimit;
 | |
| 		m_upperLimit          = other.m_upperLimit;
 | |
| 		m_bounce              = other.m_bounce;
 | |
| 		m_stopERP             = other.m_stopERP;
 | |
| 		m_stopCFM             = other.m_stopCFM;
 | |
| 		m_motorERP            = other.m_motorERP;
 | |
| 		m_motorCFM            = other.m_motorCFM;
 | |
| 		
 | |
| 		m_currentLimitError   = other.m_currentLimitError;
 | |
| 		m_currentLimitErrorHi = other.m_currentLimitErrorHi;
 | |
| 		m_currentLinearDiff   = other.m_currentLinearDiff;
 | |
| 
 | |
| 		for(int i=0; i < 3; i++) 
 | |
| 		{
 | |
| 			m_enableMotor[i]            = other.m_enableMotor[i];
 | |
| 			m_servoMotor[i]             = other.m_servoMotor[i];
 | |
| 			m_enableSpring[i]           = other.m_enableSpring[i];
 | |
| 			m_servoTarget[i]            = other.m_servoTarget[i];
 | |
| 			m_springStiffness[i]        = other.m_springStiffness[i];
 | |
| 			m_springStiffnessLimited[i] = other.m_springStiffnessLimited[i];
 | |
| 			m_springDamping[i]          = other.m_springDamping[i];
 | |
| 			m_springDampingLimited[i]   = other.m_springDampingLimited[i];
 | |
| 			m_equilibriumPoint[i]       = other.m_equilibriumPoint[i];
 | |
| 			m_targetVelocity[i]         = other.m_targetVelocity[i];
 | |
| 			m_maxMotorForce[i]          = other.m_maxMotorForce[i];
 | |
| 
 | |
| 			m_currentLimit[i]     = other.m_currentLimit[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	inline bool isLimited(int limitIndex)
 | |
| 	{
 | |
| 		return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
 | |
| 	}
 | |
| 
 | |
| 	void testLimitValue(int limitIndex, btScalar test_value);
 | |
| };
 | |
| 
 | |
| enum bt6DofFlags2
 | |
| {
 | |
| 	BT_6DOF_FLAGS_CFM_STOP2 = 1,
 | |
| 	BT_6DOF_FLAGS_ERP_STOP2 = 2,
 | |
| 	BT_6DOF_FLAGS_CFM_MOTO2 = 4,
 | |
| 	BT_6DOF_FLAGS_ERP_MOTO2 = 8
 | |
| };
 | |
| #define BT_6DOF_FLAGS_AXIS_SHIFT2 4 // bits per axis
 | |
| 
 | |
| 
 | |
| ATTRIBUTE_ALIGNED16(class) btGeneric6DofSpring2Constraint : public btTypedConstraint
 | |
| {
 | |
| protected:
 | |
| 
 | |
| 	btTransform m_frameInA;
 | |
| 	btTransform m_frameInB;
 | |
| 
 | |
| 	btJacobianEntry m_jacLinear[3];
 | |
| 	btJacobianEntry m_jacAng[3];
 | |
| 
 | |
| 	btTranslationalLimitMotor2 m_linearLimits;
 | |
| 	btRotationalLimitMotor2 m_angularLimits[3];
 | |
| 
 | |
| 	RotateOrder m_rotateOrder;
 | |
| 
 | |
| protected:
 | |
| 
 | |
| 	btTransform  m_calculatedTransformA;
 | |
| 	btTransform  m_calculatedTransformB;
 | |
| 	btVector3    m_calculatedAxisAngleDiff;
 | |
| 	btVector3    m_calculatedAxis[3];
 | |
| 	btVector3    m_calculatedLinearDiff;
 | |
| 	btScalar     m_factA;
 | |
| 	btScalar     m_factB;
 | |
| 	bool         m_hasStaticBody;
 | |
| 	int          m_flags;
 | |
| 
 | |
| 	btGeneric6DofSpring2Constraint&	operator=(btGeneric6DofSpring2Constraint&)
 | |
| 	{
 | |
| 		btAssert(0);
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | |
| 	int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | |
| 
 | |
| 	void calculateLinearInfo();
 | |
| 	void calculateAngleInfo();
 | |
| 	void testAngularLimitMotor(int axis_index);
 | |
| 
 | |
| 	void calculateJacobi(btRotationalLimitMotor2* limot, const btTransform& transA,const btTransform& transB, btConstraintInfo2* info, int srow, btVector3& ax1, int rotational, int rotAllowed);
 | |
| 	int get_limit_motor_info2(btRotationalLimitMotor2* limot,
 | |
| 		const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
 | |
| 		btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed = false);
 | |
| 
 | |
| public:
 | |
| 
 | |
| 	BT_DECLARE_ALIGNED_ALLOCATOR();
 | |
| 
 | |
|     btGeneric6DofSpring2Constraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, RotateOrder rotOrder = RO_XYZ);
 | |
|     btGeneric6DofSpring2Constraint(btRigidBody& rbB, const btTransform& frameInB, RotateOrder rotOrder = RO_XYZ);
 | |
| 
 | |
| 	virtual void buildJacobian() {}
 | |
| 	virtual void getInfo1 (btConstraintInfo1* info);
 | |
| 	virtual void getInfo2 (btConstraintInfo2* info);
 | |
| 	virtual int calculateSerializeBufferSize() const;
 | |
| 	virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
 | |
| 
 | |
| 	btRotationalLimitMotor2* getRotationalLimitMotor(int index) { return &m_angularLimits[index]; }
 | |
| 	btTranslationalLimitMotor2* getTranslationalLimitMotor() { return &m_linearLimits; }
 | |
| 
 | |
| 	// Calculates the global transform for the joint offset for body A an B, and also calculates the angle differences between the bodies.
 | |
| 	void calculateTransforms(const btTransform& transA,const btTransform& transB);
 | |
| 	void calculateTransforms();
 | |
| 
 | |
| 	// Gets the global transform of the offset for body A
 | |
| 	const btTransform & getCalculatedTransformA() const { return m_calculatedTransformA; }
 | |
| 	// Gets the global transform of the offset for body B
 | |
| 	const btTransform & getCalculatedTransformB() const { return m_calculatedTransformB; }
 | |
| 
 | |
| 	const btTransform & getFrameOffsetA() const { return m_frameInA; }
 | |
| 	const btTransform & getFrameOffsetB() const { return m_frameInB; }
 | |
| 
 | |
| 	btTransform & getFrameOffsetA() { return m_frameInA; }
 | |
| 	btTransform & getFrameOffsetB() { return m_frameInB; }
 | |
| 
 | |
| 	// Get the rotation axis in global coordinates ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
 | |
| 	btVector3 getAxis(int axis_index) const { return m_calculatedAxis[axis_index]; }
 | |
| 
 | |
| 	// Get the relative Euler angle ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
 | |
| 	btScalar getAngle(int axis_index) const { return m_calculatedAxisAngleDiff[axis_index]; }
 | |
| 
 | |
| 	// Get the relative position of the constraint pivot ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
 | |
| 	btScalar getRelativePivotPosition(int axis_index) const { return m_calculatedLinearDiff[axis_index]; }
 | |
| 
 | |
| 	void setFrames(const btTransform & frameA, const btTransform & frameB);
 | |
| 
 | |
| 	void setLinearLowerLimit(const btVector3& linearLower) { m_linearLimits.m_lowerLimit = linearLower; }
 | |
| 	void getLinearLowerLimit(btVector3& linearLower) { linearLower = m_linearLimits.m_lowerLimit; }
 | |
| 	void setLinearUpperLimit(const btVector3& linearUpper) { m_linearLimits.m_upperLimit = linearUpper; }
 | |
| 	void getLinearUpperLimit(btVector3& linearUpper) { linearUpper = m_linearLimits.m_upperLimit; }
 | |
| 
 | |
| 	void setAngularLowerLimit(const btVector3& angularLower)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++) 
 | |
| 			m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
 | |
| 	}
 | |
| 
 | |
| 	void setAngularLowerLimitReversed(const btVector3& angularLower)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++) 
 | |
| 			m_angularLimits[i].m_hiLimit = btNormalizeAngle(-angularLower[i]);
 | |
| 	}
 | |
| 
 | |
| 	void getAngularLowerLimit(btVector3& angularLower)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++) 
 | |
| 			angularLower[i] = m_angularLimits[i].m_loLimit;
 | |
| 	}
 | |
| 
 | |
| 	void getAngularLowerLimitReversed(btVector3& angularLower)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++)
 | |
| 			angularLower[i] = -m_angularLimits[i].m_hiLimit;
 | |
| 	}
 | |
| 
 | |
| 	void setAngularUpperLimit(const btVector3& angularUpper)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++)
 | |
| 			m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
 | |
| 	}
 | |
| 
 | |
| 	void setAngularUpperLimitReversed(const btVector3& angularUpper)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++)
 | |
| 			m_angularLimits[i].m_loLimit = btNormalizeAngle(-angularUpper[i]);
 | |
| 	}
 | |
| 
 | |
| 	void getAngularUpperLimit(btVector3& angularUpper)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++)
 | |
| 			angularUpper[i] = m_angularLimits[i].m_hiLimit;
 | |
| 	}
 | |
| 
 | |
| 	void getAngularUpperLimitReversed(btVector3& angularUpper)
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++)
 | |
| 			angularUpper[i] = -m_angularLimits[i].m_loLimit;
 | |
| 	}
 | |
| 
 | |
| 	//first 3 are linear, next 3 are angular
 | |
| 
 | |
| 	void setLimit(int axis, btScalar lo, btScalar hi)
 | |
| 	{
 | |
| 		if(axis<3)
 | |
| 		{
 | |
| 			m_linearLimits.m_lowerLimit[axis] = lo;
 | |
| 			m_linearLimits.m_upperLimit[axis] = hi;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			lo = btNormalizeAngle(lo);
 | |
| 			hi = btNormalizeAngle(hi);
 | |
| 			m_angularLimits[axis-3].m_loLimit = lo;
 | |
| 			m_angularLimits[axis-3].m_hiLimit = hi;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void setLimitReversed(int axis, btScalar lo, btScalar hi)
 | |
| 	{
 | |
| 		if(axis<3)
 | |
| 		{
 | |
| 			m_linearLimits.m_lowerLimit[axis] = lo;
 | |
| 			m_linearLimits.m_upperLimit[axis] = hi;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			lo = btNormalizeAngle(lo);
 | |
| 			hi = btNormalizeAngle(hi);
 | |
| 			m_angularLimits[axis-3].m_hiLimit = -lo;
 | |
| 			m_angularLimits[axis-3].m_loLimit = -hi;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bool isLimited(int limitIndex)
 | |
| 	{
 | |
| 		if(limitIndex<3)
 | |
| 		{
 | |
| 			return m_linearLimits.isLimited(limitIndex);
 | |
| 		}
 | |
| 		return m_angularLimits[limitIndex-3].isLimited();
 | |
| 	}
 | |
| 
 | |
| 	void setRotationOrder(RotateOrder order) { m_rotateOrder = order; }
 | |
| 	RotateOrder getRotationOrder() { return m_rotateOrder; }
 | |
| 
 | |
| 	void setAxis( const btVector3& axis1, const btVector3& axis2);
 | |
| 
 | |
| 	void setBounce(int index, btScalar bounce);
 | |
| 
 | |
| 	void enableMotor(int index, bool onOff);
 | |
| 	void setServo(int index, bool onOff); // set the type of the motor (servo or not) (the motor has to be turned on for servo also)
 | |
| 	void setTargetVelocity(int index, btScalar velocity);
 | |
| 	void setServoTarget(int index, btScalar target);
 | |
| 	void setMaxMotorForce(int index, btScalar force);
 | |
| 
 | |
| 	void enableSpring(int index, bool onOff);
 | |
| 	void setStiffness(int index, btScalar stiffness, bool limitIfNeeded = true); // if limitIfNeeded is true the system will automatically limit the stiffness in necessary situations where otherwise the spring would move unrealistically too widely
 | |
| 	void setDamping(int index, btScalar damping, bool limitIfNeeded = true); // if limitIfNeeded is true the system will automatically limit the damping in necessary situations where otherwise the spring would blow up
 | |
| 	void setEquilibriumPoint(); // set the current constraint position/orientation as an equilibrium point for all DOF
 | |
| 	void setEquilibriumPoint(int index);  // set the current constraint position/orientation as an equilibrium point for given DOF
 | |
| 	void setEquilibriumPoint(int index, btScalar val);
 | |
| 
 | |
| 	//override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | |
| 	//If no axis is provided, it uses the default axis for this constraint.
 | |
| 	virtual void setParam(int num, btScalar value, int axis = -1);
 | |
| 	virtual btScalar getParam(int num, int axis = -1) const;
 | |
|     
 | |
|     static btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
 | |
|     static bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz);
 | |
|     static bool matrixToEulerXZY(const btMatrix3x3& mat,btVector3& xyz);
 | |
|     static bool matrixToEulerYXZ(const btMatrix3x3& mat,btVector3& xyz);
 | |
|     static bool matrixToEulerYZX(const btMatrix3x3& mat,btVector3& xyz);
 | |
|     static bool matrixToEulerZXY(const btMatrix3x3& mat,btVector3& xyz);
 | |
|     static bool matrixToEulerZYX(const btMatrix3x3& mat,btVector3& xyz);
 | |
| };
 | |
| 
 | |
| 
 | |
| struct btGeneric6DofSpring2ConstraintData
 | |
| {
 | |
| 	btTypedConstraintData m_typeConstraintData;
 | |
| 	btTransformFloatData m_rbAFrame;
 | |
| 	btTransformFloatData m_rbBFrame;
 | |
| 
 | |
| 	btVector3FloatData m_linearUpperLimit;
 | |
| 	btVector3FloatData m_linearLowerLimit;
 | |
| 	btVector3FloatData m_linearBounce;
 | |
| 	btVector3FloatData m_linearStopERP;
 | |
| 	btVector3FloatData m_linearStopCFM;
 | |
| 	btVector3FloatData m_linearMotorERP;
 | |
| 	btVector3FloatData m_linearMotorCFM;
 | |
| 	btVector3FloatData m_linearTargetVelocity;
 | |
| 	btVector3FloatData m_linearMaxMotorForce;
 | |
| 	btVector3FloatData m_linearServoTarget;
 | |
| 	btVector3FloatData m_linearSpringStiffness;
 | |
| 	btVector3FloatData m_linearSpringDamping;
 | |
| 	btVector3FloatData m_linearEquilibriumPoint;
 | |
| 	char               m_linearEnableMotor[4];
 | |
| 	char               m_linearServoMotor[4];
 | |
| 	char               m_linearEnableSpring[4];
 | |
| 	char               m_linearSpringStiffnessLimited[4];
 | |
| 	char               m_linearSpringDampingLimited[4];
 | |
| 	char               m_padding1[4];
 | |
| 
 | |
| 	btVector3FloatData m_angularUpperLimit;
 | |
| 	btVector3FloatData m_angularLowerLimit;
 | |
| 	btVector3FloatData m_angularBounce;
 | |
| 	btVector3FloatData m_angularStopERP;
 | |
| 	btVector3FloatData m_angularStopCFM;
 | |
| 	btVector3FloatData m_angularMotorERP;
 | |
| 	btVector3FloatData m_angularMotorCFM;
 | |
| 	btVector3FloatData m_angularTargetVelocity;
 | |
| 	btVector3FloatData m_angularMaxMotorForce;
 | |
| 	btVector3FloatData m_angularServoTarget;
 | |
| 	btVector3FloatData m_angularSpringStiffness;
 | |
| 	btVector3FloatData m_angularSpringDamping;
 | |
| 	btVector3FloatData m_angularEquilibriumPoint;
 | |
| 	char               m_angularEnableMotor[4];
 | |
| 	char               m_angularServoMotor[4];
 | |
| 	char               m_angularEnableSpring[4];
 | |
| 	char               m_angularSpringStiffnessLimited[4];
 | |
| 	char               m_angularSpringDampingLimited[4];
 | |
| 
 | |
| 	int                m_rotateOrder;
 | |
| };
 | |
| 
 | |
| struct btGeneric6DofSpring2ConstraintDoubleData2
 | |
| {
 | |
| 	btTypedConstraintDoubleData m_typeConstraintData;
 | |
| 	btTransformDoubleData m_rbAFrame;
 | |
| 	btTransformDoubleData m_rbBFrame;
 | |
| 
 | |
| 	btVector3DoubleData m_linearUpperLimit;
 | |
| 	btVector3DoubleData m_linearLowerLimit;
 | |
| 	btVector3DoubleData m_linearBounce;
 | |
| 	btVector3DoubleData m_linearStopERP;
 | |
| 	btVector3DoubleData m_linearStopCFM;
 | |
| 	btVector3DoubleData m_linearMotorERP;
 | |
| 	btVector3DoubleData m_linearMotorCFM;
 | |
| 	btVector3DoubleData m_linearTargetVelocity;
 | |
| 	btVector3DoubleData m_linearMaxMotorForce;
 | |
| 	btVector3DoubleData m_linearServoTarget;
 | |
| 	btVector3DoubleData m_linearSpringStiffness;
 | |
| 	btVector3DoubleData m_linearSpringDamping;
 | |
| 	btVector3DoubleData m_linearEquilibriumPoint;
 | |
| 	char                m_linearEnableMotor[4];
 | |
| 	char                m_linearServoMotor[4];
 | |
| 	char                m_linearEnableSpring[4];
 | |
| 	char                m_linearSpringStiffnessLimited[4];
 | |
| 	char                m_linearSpringDampingLimited[4];
 | |
| 	char                m_padding1[4];
 | |
| 
 | |
| 	btVector3DoubleData m_angularUpperLimit;
 | |
| 	btVector3DoubleData m_angularLowerLimit;
 | |
| 	btVector3DoubleData m_angularBounce;
 | |
| 	btVector3DoubleData m_angularStopERP;
 | |
| 	btVector3DoubleData m_angularStopCFM;
 | |
| 	btVector3DoubleData m_angularMotorERP;
 | |
| 	btVector3DoubleData m_angularMotorCFM;
 | |
| 	btVector3DoubleData m_angularTargetVelocity;
 | |
| 	btVector3DoubleData m_angularMaxMotorForce;
 | |
| 	btVector3DoubleData m_angularServoTarget;
 | |
| 	btVector3DoubleData m_angularSpringStiffness;
 | |
| 	btVector3DoubleData m_angularSpringDamping;
 | |
| 	btVector3DoubleData m_angularEquilibriumPoint;
 | |
| 	char                m_angularEnableMotor[4];
 | |
| 	char                m_angularServoMotor[4];
 | |
| 	char                m_angularEnableSpring[4];
 | |
| 	char                m_angularSpringStiffnessLimited[4];
 | |
| 	char                m_angularSpringDampingLimited[4];
 | |
| 
 | |
| 	int                 m_rotateOrder;
 | |
| };
 | |
| 
 | |
| SIMD_FORCE_INLINE int btGeneric6DofSpring2Constraint::calculateSerializeBufferSize() const
 | |
| {
 | |
| 	return sizeof(btGeneric6DofSpring2ConstraintData2);
 | |
| }
 | |
| 
 | |
| SIMD_FORCE_INLINE const char* btGeneric6DofSpring2Constraint::serialize(void* dataBuffer, btSerializer* serializer) const
 | |
| {
 | |
| 	btGeneric6DofSpring2ConstraintData2* dof = (btGeneric6DofSpring2ConstraintData2*)dataBuffer;
 | |
| 	btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
 | |
| 
 | |
| 	m_frameInA.serialize(dof->m_rbAFrame);
 | |
| 	m_frameInB.serialize(dof->m_rbBFrame);
 | |
| 
 | |
| 	int i;
 | |
| 	for (i=0;i<3;i++)
 | |
| 	{
 | |
| 		dof->m_angularLowerLimit.m_floats[i]       = m_angularLimits[i].m_loLimit;
 | |
| 		dof->m_angularUpperLimit.m_floats[i]       = m_angularLimits[i].m_hiLimit;
 | |
| 		dof->m_angularBounce.m_floats[i]           = m_angularLimits[i].m_bounce;
 | |
| 		dof->m_angularStopERP.m_floats[i]          = m_angularLimits[i].m_stopERP;
 | |
| 		dof->m_angularStopCFM.m_floats[i]          = m_angularLimits[i].m_stopCFM;
 | |
| 		dof->m_angularMotorERP.m_floats[i]         = m_angularLimits[i].m_motorERP;
 | |
| 		dof->m_angularMotorCFM.m_floats[i]         = m_angularLimits[i].m_motorCFM;
 | |
| 		dof->m_angularTargetVelocity.m_floats[i]   = m_angularLimits[i].m_targetVelocity;
 | |
| 		dof->m_angularMaxMotorForce.m_floats[i]    = m_angularLimits[i].m_maxMotorForce;
 | |
| 		dof->m_angularServoTarget.m_floats[i]      = m_angularLimits[i].m_servoTarget;
 | |
| 		dof->m_angularSpringStiffness.m_floats[i]  = m_angularLimits[i].m_springStiffness;
 | |
| 		dof->m_angularSpringDamping.m_floats[i]    = m_angularLimits[i].m_springDamping;
 | |
| 		dof->m_angularEquilibriumPoint.m_floats[i] = m_angularLimits[i].m_equilibriumPoint;
 | |
| 	}
 | |
| 	dof->m_angularLowerLimit.m_floats[3]       = 0;
 | |
| 	dof->m_angularUpperLimit.m_floats[3]       = 0;
 | |
| 	dof->m_angularBounce.m_floats[3]           = 0;
 | |
| 	dof->m_angularStopERP.m_floats[3]          = 0;
 | |
| 	dof->m_angularStopCFM.m_floats[3]          = 0;
 | |
| 	dof->m_angularMotorERP.m_floats[3]         = 0;
 | |
| 	dof->m_angularMotorCFM.m_floats[3]         = 0;
 | |
| 	dof->m_angularTargetVelocity.m_floats[3]   = 0;
 | |
| 	dof->m_angularMaxMotorForce.m_floats[3]    = 0;
 | |
| 	dof->m_angularServoTarget.m_floats[3]      = 0;
 | |
| 	dof->m_angularSpringStiffness.m_floats[3]  = 0;
 | |
| 	dof->m_angularSpringDamping.m_floats[3]    = 0;
 | |
| 	dof->m_angularEquilibriumPoint.m_floats[3] = 0;
 | |
| 	for (i=0;i<4;i++)
 | |
| 	{
 | |
| 		dof->m_angularEnableMotor[i]            = i < 3 ? ( m_angularLimits[i].m_enableMotor ? 1 : 0 ) : 0;
 | |
| 		dof->m_angularServoMotor[i]             = i < 3 ? ( m_angularLimits[i].m_servoMotor ? 1 : 0 ) : 0;
 | |
| 		dof->m_angularEnableSpring[i]           = i < 3 ? ( m_angularLimits[i].m_enableSpring ? 1 : 0 ) : 0;
 | |
| 		dof->m_angularSpringStiffnessLimited[i] = i < 3 ? ( m_angularLimits[i].m_springStiffnessLimited ? 1 : 0 ) : 0;
 | |
| 		dof->m_angularSpringDampingLimited[i]   = i < 3 ? ( m_angularLimits[i].m_springDampingLimited ? 1 : 0 ) : 0;
 | |
| 	}
 | |
| 
 | |
| 	m_linearLimits.m_lowerLimit.serialize( dof->m_linearLowerLimit );
 | |
| 	m_linearLimits.m_upperLimit.serialize( dof->m_linearUpperLimit );
 | |
| 	m_linearLimits.m_bounce.serialize( dof->m_linearBounce );
 | |
| 	m_linearLimits.m_stopERP.serialize( dof->m_linearStopERP );
 | |
| 	m_linearLimits.m_stopCFM.serialize( dof->m_linearStopCFM );
 | |
| 	m_linearLimits.m_motorERP.serialize( dof->m_linearMotorERP );
 | |
| 	m_linearLimits.m_motorCFM.serialize( dof->m_linearMotorCFM );
 | |
| 	m_linearLimits.m_targetVelocity.serialize( dof->m_linearTargetVelocity );
 | |
| 	m_linearLimits.m_maxMotorForce.serialize( dof->m_linearMaxMotorForce );
 | |
| 	m_linearLimits.m_servoTarget.serialize( dof->m_linearServoTarget );
 | |
| 	m_linearLimits.m_springStiffness.serialize( dof->m_linearSpringStiffness );
 | |
| 	m_linearLimits.m_springDamping.serialize( dof->m_linearSpringDamping );
 | |
| 	m_linearLimits.m_equilibriumPoint.serialize( dof->m_linearEquilibriumPoint );
 | |
| 	for (i=0;i<4;i++)
 | |
| 	{
 | |
| 		dof->m_linearEnableMotor[i]            = i < 3 ? ( m_linearLimits.m_enableMotor[i] ? 1 : 0 ) : 0;
 | |
| 		dof->m_linearServoMotor[i]             = i < 3 ? ( m_linearLimits.m_servoMotor[i] ? 1 : 0 ) : 0;
 | |
| 		dof->m_linearEnableSpring[i]           = i < 3 ? ( m_linearLimits.m_enableSpring[i] ? 1 : 0 ) : 0;
 | |
| 		dof->m_linearSpringStiffnessLimited[i] = i < 3 ? ( m_linearLimits.m_springStiffnessLimited[i] ? 1 : 0 ) : 0;
 | |
| 		dof->m_linearSpringDampingLimited[i]   = i < 3 ? ( m_linearLimits.m_springDampingLimited[i] ? 1 : 0 ) : 0;
 | |
| 	}
 | |
| 
 | |
| 	dof->m_rotateOrder = m_rotateOrder;
 | |
| 
 | |
| 	dof->m_padding1[0] = 0;
 | |
| 	dof->m_padding1[1] = 0;
 | |
| 	dof->m_padding1[2] = 0;
 | |
| 	dof->m_padding1[3] = 0;
 | |
| 
 | |
| 	return btGeneric6DofSpring2ConstraintDataName;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif //BT_GENERIC_6DOF_CONSTRAINT_H
 |