forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			531 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			531 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef BT_OBJECT_ARRAY__
 | |
| #define BT_OBJECT_ARRAY__
 | |
| 
 | |
| #include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
 | |
| #include "btAlignedAllocator.h"
 | |
| 
 | |
| ///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW
 | |
| ///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
 | |
| ///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator=
 | |
| ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and
 | |
| ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240
 | |
| 
 | |
| #define BT_USE_PLACEMENT_NEW 1
 | |
| //#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
 | |
| #define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
 | |
| 
 | |
| #ifdef BT_USE_MEMCPY
 | |
| #include <memory.h>
 | |
| #include <string.h>
 | |
| #endif //BT_USE_MEMCPY
 | |
| 
 | |
| #ifdef BT_USE_PLACEMENT_NEW
 | |
| #include <new> //for placement new
 | |
| #endif //BT_USE_PLACEMENT_NEW
 | |
| 
 | |
| // The register keyword is deprecated in C++11 so don't use it.
 | |
| #if __cplusplus > 199711L
 | |
| #define BT_REGISTER
 | |
| #else
 | |
| #define BT_REGISTER register
 | |
| #endif
 | |
| 
 | |
| ///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
 | |
| ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
 | |
| template <typename T> 
 | |
| //template <class T> 
 | |
| class btAlignedObjectArray
 | |
| {
 | |
| 	btAlignedAllocator<T , 16>	m_allocator;
 | |
| 
 | |
| 	int					m_size;
 | |
| 	int					m_capacity;
 | |
| 	T*					m_data;
 | |
| 	//PCK: added this line
 | |
| 	bool				m_ownsMemory;
 | |
| 
 | |
| #ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
 | |
| public:
 | |
| 	SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other)
 | |
| 	{
 | |
| 		copyFromArray(other);
 | |
| 		return *this;
 | |
| 	}
 | |
| #else//BT_ALLOW_ARRAY_COPY_OPERATOR
 | |
| private:
 | |
| 		SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other);
 | |
| #endif//BT_ALLOW_ARRAY_COPY_OPERATOR
 | |
| 
 | |
| protected:
 | |
| 		SIMD_FORCE_INLINE	int	allocSize(int size)
 | |
| 		{
 | |
| 			return (size ? size*2 : 1);
 | |
| 		}
 | |
| 		SIMD_FORCE_INLINE	void	copy(int start,int end, T* dest) const
 | |
| 		{
 | |
| 			int i;
 | |
| 			for (i=start;i<end;++i)
 | |
| #ifdef BT_USE_PLACEMENT_NEW
 | |
| 				new (&dest[i]) T(m_data[i]);
 | |
| #else
 | |
| 				dest[i] = m_data[i];
 | |
| #endif //BT_USE_PLACEMENT_NEW
 | |
| 		}
 | |
| 
 | |
| 		SIMD_FORCE_INLINE	void	init()
 | |
| 		{
 | |
| 			//PCK: added this line
 | |
| 			m_ownsMemory = true;
 | |
| 			m_data = 0;
 | |
| 			m_size = 0;
 | |
| 			m_capacity = 0;
 | |
| 		}
 | |
| 		SIMD_FORCE_INLINE	void	destroy(int first,int last)
 | |
| 		{
 | |
| 			int i;
 | |
| 			for (i=first; i<last;i++)
 | |
| 			{
 | |
| 				m_data[i].~T();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		SIMD_FORCE_INLINE	void* allocate(int size)
 | |
| 		{
 | |
| 			if (size)
 | |
| 				return m_allocator.allocate(size);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		SIMD_FORCE_INLINE	void	deallocate()
 | |
| 		{
 | |
| 			if(m_data)	{
 | |
| 				//PCK: enclosed the deallocation in this block
 | |
| 				if (m_ownsMemory)
 | |
| 				{
 | |
| 					m_allocator.deallocate(m_data);
 | |
| 				}
 | |
| 				m_data = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	
 | |
| 
 | |
| 
 | |
| 	public:
 | |
| 		
 | |
| 		btAlignedObjectArray()
 | |
| 		{
 | |
| 			init();
 | |
| 		}
 | |
| 
 | |
| 		~btAlignedObjectArray()
 | |
| 		{
 | |
| 			clear();
 | |
| 		}
 | |
| 
 | |
| 		///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
 | |
| 		btAlignedObjectArray(const btAlignedObjectArray& otherArray)
 | |
| 		{
 | |
| 			init();
 | |
| 
 | |
| 			int otherSize = otherArray.size();
 | |
| 			resize (otherSize);
 | |
| 			otherArray.copy(0, otherSize, m_data);
 | |
| 		}
 | |
| 
 | |
| 		
 | |
| 		
 | |
| 		/// return the number of elements in the array
 | |
| 		SIMD_FORCE_INLINE	int size() const
 | |
| 		{	
 | |
| 			return m_size;
 | |
| 		}
 | |
| 		
 | |
| 		SIMD_FORCE_INLINE const T& at(int n) const
 | |
| 		{
 | |
| 			btAssert(n>=0);
 | |
| 			btAssert(n<size());
 | |
| 			return m_data[n];
 | |
| 		}
 | |
| 
 | |
| 		SIMD_FORCE_INLINE T& at(int n)
 | |
| 		{
 | |
| 			btAssert(n>=0);
 | |
| 			btAssert(n<size());
 | |
| 			return m_data[n];
 | |
| 		}
 | |
| 
 | |
| 		SIMD_FORCE_INLINE const T& operator[](int n) const
 | |
| 		{
 | |
| 			btAssert(n>=0);
 | |
| 			btAssert(n<size());
 | |
| 			return m_data[n];
 | |
| 		}
 | |
| 
 | |
| 		SIMD_FORCE_INLINE T& operator[](int n)
 | |
| 		{
 | |
| 			btAssert(n>=0);
 | |
| 			btAssert(n<size());
 | |
| 			return m_data[n];
 | |
| 		}
 | |
| 		
 | |
| 
 | |
| 		///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
 | |
| 		SIMD_FORCE_INLINE	void	clear()
 | |
| 		{
 | |
| 			destroy(0,size());
 | |
| 			
 | |
| 			deallocate();
 | |
| 			
 | |
| 			init();
 | |
| 		}
 | |
| 
 | |
| 		SIMD_FORCE_INLINE	void	pop_back()
 | |
| 		{
 | |
| 			btAssert(m_size>0);
 | |
| 			m_size--;
 | |
| 			m_data[m_size].~T();
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
 | |
| 		///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
 | |
| 		SIMD_FORCE_INLINE	void	resizeNoInitialize(int newsize)
 | |
| 		{
 | |
| 			if (newsize > size())
 | |
| 			{
 | |
| 				reserve(newsize);
 | |
| 			}
 | |
| 			m_size = newsize;
 | |
| 		}
 | |
| 	
 | |
| 		SIMD_FORCE_INLINE	void	resize(int newsize, const T& fillData=T())
 | |
| 		{
 | |
| 			const BT_REGISTER int curSize = size();
 | |
| 
 | |
| 			if (newsize < curSize)
 | |
| 			{
 | |
| 				for(int i = newsize; i < curSize; i++)
 | |
| 				{
 | |
| 					m_data[i].~T();
 | |
| 				}
 | |
| 			} else
 | |
| 			{
 | |
| 				if (newsize > curSize)
 | |
| 				{
 | |
| 					reserve(newsize);
 | |
| 				}
 | |
| #ifdef BT_USE_PLACEMENT_NEW
 | |
| 				for (int i=curSize;i<newsize;i++)
 | |
| 				{
 | |
| 					new ( &m_data[i]) T(fillData);
 | |
| 				}
 | |
| #endif //BT_USE_PLACEMENT_NEW
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 			m_size = newsize;
 | |
| 		}
 | |
| 		SIMD_FORCE_INLINE	T&  expandNonInitializing( )
 | |
| 		{	
 | |
| 			const BT_REGISTER int sz = size();
 | |
| 			if( sz == capacity() )
 | |
| 			{
 | |
| 				reserve( allocSize(size()) );
 | |
| 			}
 | |
| 			m_size++;
 | |
| 
 | |
| 			return m_data[sz];		
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		SIMD_FORCE_INLINE	T&  expand( const T& fillValue=T())
 | |
| 		{	
 | |
| 			const BT_REGISTER int sz = size();
 | |
| 			if( sz == capacity() )
 | |
| 			{
 | |
| 				reserve( allocSize(size()) );
 | |
| 			}
 | |
| 			m_size++;
 | |
| #ifdef BT_USE_PLACEMENT_NEW
 | |
| 			new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
 | |
| #endif
 | |
| 
 | |
| 			return m_data[sz];		
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		SIMD_FORCE_INLINE	void push_back(const T& _Val)
 | |
| 		{	
 | |
| 			const BT_REGISTER int sz = size();
 | |
| 			if( sz == capacity() )
 | |
| 			{
 | |
| 				reserve( allocSize(size()) );
 | |
| 			}
 | |
| 			
 | |
| #ifdef BT_USE_PLACEMENT_NEW
 | |
| 			new ( &m_data[m_size] ) T(_Val);
 | |
| #else
 | |
| 			m_data[size()] = _Val;			
 | |
| #endif //BT_USE_PLACEMENT_NEW
 | |
| 
 | |
| 			m_size++;
 | |
| 		}
 | |
| 
 | |
| 	
 | |
| 		/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
 | |
| 		SIMD_FORCE_INLINE	int capacity() const
 | |
| 		{	
 | |
| 			return m_capacity;
 | |
| 		}
 | |
| 		
 | |
| 		SIMD_FORCE_INLINE	void reserve(int _Count)
 | |
| 		{	// determine new minimum length of allocated storage
 | |
| 			if (capacity() < _Count)
 | |
| 			{	// not enough room, reallocate
 | |
| 				T*	s = (T*)allocate(_Count);
 | |
| 
 | |
| 				copy(0, size(), s);
 | |
| 
 | |
| 				destroy(0,size());
 | |
| 
 | |
| 				deallocate();
 | |
| 				
 | |
| 				//PCK: added this line
 | |
| 				m_ownsMemory = true;
 | |
| 
 | |
| 				m_data = s;
 | |
| 				
 | |
| 				m_capacity = _Count;
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		class less
 | |
| 		{
 | |
| 			public:
 | |
| 
 | |
| 				bool operator() ( const T& a, const T& b ) const
 | |
| 				{
 | |
| 					return ( a < b );
 | |
| 				}
 | |
| 		};
 | |
| 	
 | |
| 
 | |
| 		template <typename L>
 | |
| 		void quickSortInternal(const L& CompareFunc,int lo, int hi)
 | |
| 		{
 | |
| 		//  lo is the lower index, hi is the upper index
 | |
| 		//  of the region of array a that is to be sorted
 | |
| 			int i=lo, j=hi;
 | |
| 			T x=m_data[(lo+hi)/2];
 | |
| 
 | |
| 			//  partition
 | |
| 			do
 | |
| 			{    
 | |
| 				while (CompareFunc(m_data[i],x)) 
 | |
| 					i++; 
 | |
| 				while (CompareFunc(x,m_data[j])) 
 | |
| 					j--;
 | |
| 				if (i<=j)
 | |
| 				{
 | |
| 					swap(i,j);
 | |
| 					i++; j--;
 | |
| 				}
 | |
| 			} while (i<=j);
 | |
| 
 | |
| 			//  recursion
 | |
| 			if (lo<j) 
 | |
| 				quickSortInternal( CompareFunc, lo, j);
 | |
| 			if (i<hi) 
 | |
| 				quickSortInternal( CompareFunc, i, hi);
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		template <typename L>
 | |
| 		void quickSort(const L& CompareFunc)
 | |
| 		{
 | |
| 			//don't sort 0 or 1 elements
 | |
| 			if (size()>1)
 | |
| 			{
 | |
| 				quickSortInternal(CompareFunc,0,size()-1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
 | |
| 		template <typename L>
 | |
| 		void downHeap(T *pArr, int k, int n, const L& CompareFunc)
 | |
| 		{
 | |
| 			/*  PRE: a[k+1..N] is a heap */
 | |
| 			/* POST:  a[k..N]  is a heap */
 | |
| 			
 | |
| 			T temp = pArr[k - 1];
 | |
| 			/* k has child(s) */
 | |
| 			while (k <= n/2) 
 | |
| 			{
 | |
| 				int child = 2*k;
 | |
| 				
 | |
| 				if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child]))
 | |
| 				{
 | |
| 					child++;
 | |
| 				}
 | |
| 				/* pick larger child */
 | |
| 				if (CompareFunc(temp , pArr[child - 1]))
 | |
| 				{
 | |
| 					/* move child up */
 | |
| 					pArr[k - 1] = pArr[child - 1];
 | |
| 					k = child;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			pArr[k - 1] = temp;
 | |
| 		} /*downHeap*/
 | |
| 
 | |
| 		void	swap(int index0,int index1)
 | |
| 		{
 | |
| #ifdef BT_USE_MEMCPY
 | |
| 			char	temp[sizeof(T)];
 | |
| 			memcpy(temp,&m_data[index0],sizeof(T));
 | |
| 			memcpy(&m_data[index0],&m_data[index1],sizeof(T));
 | |
| 			memcpy(&m_data[index1],temp,sizeof(T));
 | |
| #else
 | |
| 			T temp = m_data[index0];
 | |
| 			m_data[index0] = m_data[index1];
 | |
| 			m_data[index1] = temp;
 | |
| #endif //BT_USE_PLACEMENT_NEW
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	template <typename L>
 | |
| 	void heapSort(const L& CompareFunc)
 | |
| 	{
 | |
| 		/* sort a[0..N-1],  N.B. 0 to N-1 */
 | |
| 		int k;
 | |
| 		int n = m_size;
 | |
| 		for (k = n/2; k > 0; k--) 
 | |
| 		{
 | |
| 			downHeap(m_data, k, n, CompareFunc);
 | |
| 		}
 | |
| 
 | |
| 		/* a[1..N] is now a heap */
 | |
| 		while ( n>=1 ) 
 | |
| 		{
 | |
| 			swap(0,n-1); /* largest of a[0..n-1] */
 | |
| 
 | |
| 
 | |
| 			n = n - 1;
 | |
| 			/* restore a[1..i-1] heap */
 | |
| 			downHeap(m_data, 1, n, CompareFunc);
 | |
| 		} 
 | |
| 	}
 | |
| 
 | |
| 	///non-recursive binary search, assumes sorted array
 | |
| 	int	findBinarySearch(const T& key) const
 | |
| 	{
 | |
| 		int first = 0;
 | |
| 		int last = size()-1;
 | |
| 
 | |
| 		//assume sorted array
 | |
| 		while (first <= last) {
 | |
| 			int mid = (first + last) / 2;  // compute mid point.
 | |
| 			if (key > m_data[mid]) 
 | |
| 				first = mid + 1;  // repeat search in top half.
 | |
| 			else if (key < m_data[mid]) 
 | |
| 				last = mid - 1; // repeat search in bottom half.
 | |
| 			else
 | |
| 				return mid;     // found it. return position /////
 | |
| 		}
 | |
| 		return size();    // failed to find key
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	int	findLinearSearch(const T& key) const
 | |
| 	{
 | |
| 		int index=size();
 | |
| 		int i;
 | |
| 
 | |
| 		for (i=0;i<size();i++)
 | |
| 		{
 | |
| 			if (m_data[i] == key)
 | |
| 			{
 | |
| 				index = i;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		return index;
 | |
| 	}
 | |
|     
 | |
|     // If the key is not in the array, return -1 instead of 0,
 | |
|     // since 0 also means the first element in the array.
 | |
|     int	findLinearSearch2(const T& key) const
 | |
|     {
 | |
|         int index=-1;
 | |
|         int i;
 | |
|         
 | |
|         for (i=0;i<size();i++)
 | |
|         {
 | |
|             if (m_data[i] == key)
 | |
|             {
 | |
|                 index = i;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         return index;
 | |
|     }
 | |
| 
 | |
|     void removeAtIndex(int index)
 | |
|     {
 | |
|         if (index<size())
 | |
|         {
 | |
|             swap( index,size()-1);
 | |
|             pop_back();
 | |
|         }
 | |
|     }
 | |
| 	void	remove(const T& key)
 | |
| 	{
 | |
| 		int findIndex = findLinearSearch(key);
 | |
|         removeAtIndex(findIndex);
 | |
| 	}
 | |
| 
 | |
| 	//PCK: whole function
 | |
| 	void initializeFromBuffer(void *buffer, int size, int capacity)
 | |
| 	{
 | |
| 		clear();
 | |
| 		m_ownsMemory = false;
 | |
| 		m_data = (T*)buffer;
 | |
| 		m_size = size;
 | |
| 		m_capacity = capacity;
 | |
| 	}
 | |
| 
 | |
| 	void copyFromArray(const btAlignedObjectArray& otherArray)
 | |
| 	{
 | |
| 		int otherSize = otherArray.size();
 | |
| 		resize (otherSize);
 | |
| 		otherArray.copy(0, otherSize, m_data);
 | |
| 	}
 | |
| 
 | |
| };
 | |
| 
 | |
| #endif //BT_OBJECT_ARRAY__
 |