forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			1592 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1592 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #include <float.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include "DetourNavMesh.h"
 | |
| #include "DetourNode.h"
 | |
| #include "DetourCommon.h"
 | |
| #include "DetourMath.h"
 | |
| #include "DetourAlloc.h"
 | |
| #include "DetourAssert.h"
 | |
| #include <new>
 | |
| 
 | |
| 
 | |
| inline bool overlapSlabs(const float* amin, const float* amax,
 | |
| 						 const float* bmin, const float* bmax,
 | |
| 						 const float px, const float py)
 | |
| {
 | |
| 	// Check for horizontal overlap.
 | |
| 	// The segment is shrunken a little so that slabs which touch
 | |
| 	// at end points are not connected.
 | |
| 	const float minx = dtMax(amin[0]+px,bmin[0]+px);
 | |
| 	const float maxx = dtMin(amax[0]-px,bmax[0]-px);
 | |
| 	if (minx > maxx)
 | |
| 		return false;
 | |
| 	
 | |
| 	// Check vertical overlap.
 | |
| 	const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]);
 | |
| 	const float ak = amin[1] - ad*amin[0];
 | |
| 	const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]);
 | |
| 	const float bk = bmin[1] - bd*bmin[0];
 | |
| 	const float aminy = ad*minx + ak;
 | |
| 	const float amaxy = ad*maxx + ak;
 | |
| 	const float bminy = bd*minx + bk;
 | |
| 	const float bmaxy = bd*maxx + bk;
 | |
| 	const float dmin = bminy - aminy;
 | |
| 	const float dmax = bmaxy - amaxy;
 | |
| 		
 | |
| 	// Crossing segments always overlap.
 | |
| 	if (dmin*dmax < 0)
 | |
| 		return true;
 | |
| 		
 | |
| 	// Check for overlap at endpoints.
 | |
| 	const float thr = dtSqr(py*2);
 | |
| 	if (dmin*dmin <= thr || dmax*dmax <= thr)
 | |
| 		return true;
 | |
| 		
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static float getSlabCoord(const float* va, const int side)
 | |
| {
 | |
| 	if (side == 0 || side == 4)
 | |
| 		return va[0];
 | |
| 	else if (side == 2 || side == 6)
 | |
| 		return va[2];
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side)
 | |
| {
 | |
| 	if (side == 0 || side == 4)
 | |
| 	{
 | |
| 		if (va[2] < vb[2])
 | |
| 		{
 | |
| 			bmin[0] = va[2];
 | |
| 			bmin[1] = va[1];
 | |
| 			bmax[0] = vb[2];
 | |
| 			bmax[1] = vb[1];
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			bmin[0] = vb[2];
 | |
| 			bmin[1] = vb[1];
 | |
| 			bmax[0] = va[2];
 | |
| 			bmax[1] = va[1];
 | |
| 		}
 | |
| 	}
 | |
| 	else if (side == 2 || side == 6)
 | |
| 	{
 | |
| 		if (va[0] < vb[0])
 | |
| 		{
 | |
| 			bmin[0] = va[0];
 | |
| 			bmin[1] = va[1];
 | |
| 			bmax[0] = vb[0];
 | |
| 			bmax[1] = vb[1];
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			bmin[0] = vb[0];
 | |
| 			bmin[1] = vb[1];
 | |
| 			bmax[0] = va[0];
 | |
| 			bmax[1] = va[1];
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| inline int computeTileHash(int x, int y, const int mask)
 | |
| {
 | |
| 	const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
 | |
| 	const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
 | |
| 	unsigned int n = h1 * x + h2 * y;
 | |
| 	return (int)(n & mask);
 | |
| }
 | |
| 
 | |
| inline unsigned int allocLink(dtMeshTile* tile)
 | |
| {
 | |
| 	if (tile->linksFreeList == DT_NULL_LINK)
 | |
| 		return DT_NULL_LINK;
 | |
| 	unsigned int link = tile->linksFreeList;
 | |
| 	tile->linksFreeList = tile->links[link].next;
 | |
| 	return link;
 | |
| }
 | |
| 
 | |
| inline void freeLink(dtMeshTile* tile, unsigned int link)
 | |
| {
 | |
| 	tile->links[link].next = tile->linksFreeList;
 | |
| 	tile->linksFreeList = link;
 | |
| }
 | |
| 
 | |
| 
 | |
| dtNavMesh* dtAllocNavMesh()
 | |
| {
 | |
| 	void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM);
 | |
| 	if (!mem) return 0;
 | |
| 	return new(mem) dtNavMesh;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA
 | |
| /// flag set.
 | |
| void dtFreeNavMesh(dtNavMesh* navmesh)
 | |
| {
 | |
| 	if (!navmesh) return;
 | |
| 	navmesh->~dtNavMesh();
 | |
| 	dtFree(navmesh);
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| /**
 | |
| @class dtNavMesh
 | |
| 
 | |
| The navigation mesh consists of one or more tiles defining three primary types of structural data:
 | |
| 
 | |
| A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.)
 | |
| A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.)
 | |
| Off-mesh connections, which define custom point-to-point edges within the navigation graph.
 | |
| 
 | |
| The general build process is as follows:
 | |
| 
 | |
| -# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline.
 | |
| -# Optionally, create off-mesh connection data.
 | |
| -# Combine the source data into a dtNavMeshCreateParams structure.
 | |
| -# Create a tile data array using dtCreateNavMeshData().
 | |
| -# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes,
 | |
|    the tile data is loaded during this step.)
 | |
| -# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile().
 | |
| 
 | |
| Notes:
 | |
| 
 | |
| - This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding.
 | |
| - Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized 
 | |
|   to have only a single tile.
 | |
| - This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will 
 | |
|   always contain either a success or failure flag.
 | |
| 
 | |
| @see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh
 | |
| */
 | |
| 
 | |
| dtNavMesh::dtNavMesh() :
 | |
| 	m_tileWidth(0),
 | |
| 	m_tileHeight(0),
 | |
| 	m_maxTiles(0),
 | |
| 	m_tileLutSize(0),
 | |
| 	m_tileLutMask(0),
 | |
| 	m_posLookup(0),
 | |
| 	m_nextFree(0),
 | |
| 	m_tiles(0)
 | |
| {
 | |
| #ifndef DT_POLYREF64
 | |
| 	m_saltBits = 0;
 | |
| 	m_tileBits = 0;
 | |
| 	m_polyBits = 0;
 | |
| #endif
 | |
| 	memset(&m_params, 0, sizeof(dtNavMeshParams));
 | |
| 	m_orig[0] = 0;
 | |
| 	m_orig[1] = 0;
 | |
| 	m_orig[2] = 0;
 | |
| }
 | |
| 
 | |
| dtNavMesh::~dtNavMesh()
 | |
| {
 | |
| 	for (int i = 0; i < m_maxTiles; ++i)
 | |
| 	{
 | |
| 		if (m_tiles[i].flags & DT_TILE_FREE_DATA)
 | |
| 		{
 | |
| 			dtFree(m_tiles[i].data);
 | |
| 			m_tiles[i].data = 0;
 | |
| 			m_tiles[i].dataSize = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	dtFree(m_posLookup);
 | |
| 	dtFree(m_tiles);
 | |
| }
 | |
| 		
 | |
| dtStatus dtNavMesh::init(const dtNavMeshParams* params)
 | |
| {
 | |
| 	memcpy(&m_params, params, sizeof(dtNavMeshParams));
 | |
| 	dtVcopy(m_orig, params->orig);
 | |
| 	m_tileWidth = params->tileWidth;
 | |
| 	m_tileHeight = params->tileHeight;
 | |
| 	
 | |
| 	// Init tiles
 | |
| 	m_maxTiles = params->maxTiles;
 | |
| 	m_tileLutSize = dtNextPow2(params->maxTiles/4);
 | |
| 	if (!m_tileLutSize) m_tileLutSize = 1;
 | |
| 	m_tileLutMask = m_tileLutSize-1;
 | |
| 	
 | |
| 	m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM);
 | |
| 	if (!m_tiles)
 | |
| 		return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 	m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM);
 | |
| 	if (!m_posLookup)
 | |
| 		return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 	memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
 | |
| 	memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
 | |
| 	m_nextFree = 0;
 | |
| 	for (int i = m_maxTiles-1; i >= 0; --i)
 | |
| 	{
 | |
| 		m_tiles[i].salt = 1;
 | |
| 		m_tiles[i].next = m_nextFree;
 | |
| 		m_nextFree = &m_tiles[i];
 | |
| 	}
 | |
| 	
 | |
| 	// Init ID generator values.
 | |
| #ifndef DT_POLYREF64
 | |
| 	m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles));
 | |
| 	m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys));
 | |
| 	// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
 | |
| 	m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits);
 | |
| 
 | |
| 	if (m_saltBits < 10)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| #endif
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags)
 | |
| {
 | |
| 	// Make sure the data is in right format.
 | |
| 	dtMeshHeader* header = (dtMeshHeader*)data;
 | |
| 	if (header->magic != DT_NAVMESH_MAGIC)
 | |
| 		return DT_FAILURE | DT_WRONG_MAGIC;
 | |
| 	if (header->version != DT_NAVMESH_VERSION)
 | |
| 		return DT_FAILURE | DT_WRONG_VERSION;
 | |
| 
 | |
| 	dtNavMeshParams params;
 | |
| 	dtVcopy(params.orig, header->bmin);
 | |
| 	params.tileWidth = header->bmax[0] - header->bmin[0];
 | |
| 	params.tileHeight = header->bmax[2] - header->bmin[2];
 | |
| 	params.maxTiles = 1;
 | |
| 	params.maxPolys = header->polyCount;
 | |
| 	
 | |
| 	dtStatus status = init(¶ms);
 | |
| 	if (dtStatusFailed(status))
 | |
| 		return status;
 | |
| 
 | |
| 	return addTile(data, dataSize, flags, 0, 0);
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// @note The parameters are created automatically when the single tile
 | |
| /// initialization is performed.
 | |
| const dtNavMeshParams* dtNavMesh::getParams() const
 | |
| {
 | |
| 	return &m_params;
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////////////////
 | |
| int dtNavMesh::findConnectingPolys(const float* va, const float* vb,
 | |
| 								   const dtMeshTile* tile, int side,
 | |
| 								   dtPolyRef* con, float* conarea, int maxcon) const
 | |
| {
 | |
| 	if (!tile) return 0;
 | |
| 	
 | |
| 	float amin[2], amax[2];
 | |
| 	calcSlabEndPoints(va, vb, amin, amax, side);
 | |
| 	const float apos = getSlabCoord(va, side);
 | |
| 
 | |
| 	// Remove links pointing to 'side' and compact the links array. 
 | |
| 	float bmin[2], bmax[2];
 | |
| 	unsigned short m = DT_EXT_LINK | (unsigned short)side;
 | |
| 	int n = 0;
 | |
| 	
 | |
| 	dtPolyRef base = getPolyRefBase(tile);
 | |
| 	
 | |
| 	for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 	{
 | |
| 		dtPoly* poly = &tile->polys[i];
 | |
| 		const int nv = poly->vertCount;
 | |
| 		for (int j = 0; j < nv; ++j)
 | |
| 		{
 | |
| 			// Skip edges which do not point to the right side.
 | |
| 			if (poly->neis[j] != m) continue;
 | |
| 			
 | |
| 			const float* vc = &tile->verts[poly->verts[j]*3];
 | |
| 			const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3];
 | |
| 			const float bpos = getSlabCoord(vc, side);
 | |
| 			
 | |
| 			// Segments are not close enough.
 | |
| 			if (dtAbs(apos-bpos) > 0.01f)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Check if the segments touch.
 | |
| 			calcSlabEndPoints(vc,vd, bmin,bmax, side);
 | |
| 			
 | |
| 			if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue;
 | |
| 			
 | |
| 			// Add return value.
 | |
| 			if (n < maxcon)
 | |
| 			{
 | |
| 				conarea[n*2+0] = dtMax(amin[0], bmin[0]);
 | |
| 				conarea[n*2+1] = dtMin(amax[0], bmax[0]);
 | |
| 				con[n] = base | (dtPolyRef)i;
 | |
| 				n++;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| void dtNavMesh::unconnectLinks(dtMeshTile* tile, dtMeshTile* target)
 | |
| {
 | |
| 	if (!tile || !target) return;
 | |
| 
 | |
| 	const unsigned int targetNum = decodePolyIdTile(getTileRef(target));
 | |
| 
 | |
| 	for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 	{
 | |
| 		dtPoly* poly = &tile->polys[i];
 | |
| 		unsigned int j = poly->firstLink;
 | |
| 		unsigned int pj = DT_NULL_LINK;
 | |
| 		while (j != DT_NULL_LINK)
 | |
| 		{
 | |
| 			if (decodePolyIdTile(tile->links[j].ref) == targetNum)
 | |
| 			{
 | |
| 				// Remove link.
 | |
| 				unsigned int nj = tile->links[j].next;
 | |
| 				if (pj == DT_NULL_LINK)
 | |
| 					poly->firstLink = nj;
 | |
| 				else
 | |
| 					tile->links[pj].next = nj;
 | |
| 				freeLink(tile, j);
 | |
| 				j = nj;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Advance
 | |
| 				pj = j;
 | |
| 				j = tile->links[j].next;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side)
 | |
| {
 | |
| 	if (!tile) return;
 | |
| 	
 | |
| 	// Connect border links.
 | |
| 	for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 	{
 | |
| 		dtPoly* poly = &tile->polys[i];
 | |
| 
 | |
| 		// Create new links.
 | |
| //		unsigned short m = DT_EXT_LINK | (unsigned short)side;
 | |
| 		
 | |
| 		const int nv = poly->vertCount;
 | |
| 		for (int j = 0; j < nv; ++j)
 | |
| 		{
 | |
| 			// Skip non-portal edges.
 | |
| 			if ((poly->neis[j] & DT_EXT_LINK) == 0)
 | |
| 				continue;
 | |
| 			
 | |
| 			const int dir = (int)(poly->neis[j] & 0xff);
 | |
| 			if (side != -1 && dir != side)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Create new links
 | |
| 			const float* va = &tile->verts[poly->verts[j]*3];
 | |
| 			const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3];
 | |
| 			dtPolyRef nei[4];
 | |
| 			float neia[4*2];
 | |
| 			int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4);
 | |
| 			for (int k = 0; k < nnei; ++k)
 | |
| 			{
 | |
| 				unsigned int idx = allocLink(tile);
 | |
| 				if (idx != DT_NULL_LINK)
 | |
| 				{
 | |
| 					dtLink* link = &tile->links[idx];
 | |
| 					link->ref = nei[k];
 | |
| 					link->edge = (unsigned char)j;
 | |
| 					link->side = (unsigned char)dir;
 | |
| 					
 | |
| 					link->next = poly->firstLink;
 | |
| 					poly->firstLink = idx;
 | |
| 
 | |
| 					// Compress portal limits to a byte value.
 | |
| 					if (dir == 0 || dir == 4)
 | |
| 					{
 | |
| 						float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]);
 | |
| 						float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]);
 | |
| 						if (tmin > tmax)
 | |
| 							dtSwap(tmin,tmax);
 | |
| 						link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
 | |
| 						link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
 | |
| 					}
 | |
| 					else if (dir == 2 || dir == 6)
 | |
| 					{
 | |
| 						float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]);
 | |
| 						float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]);
 | |
| 						if (tmin > tmax)
 | |
| 							dtSwap(tmin,tmax);
 | |
| 						link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
 | |
| 						link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side)
 | |
| {
 | |
| 	if (!tile) return;
 | |
| 	
 | |
| 	// Connect off-mesh links.
 | |
| 	// We are interested on links which land from target tile to this tile.
 | |
| 	const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side);
 | |
| 	
 | |
| 	for (int i = 0; i < target->header->offMeshConCount; ++i)
 | |
| 	{
 | |
| 		dtOffMeshConnection* targetCon = &target->offMeshCons[i];
 | |
| 		if (targetCon->side != oppositeSide)
 | |
| 			continue;
 | |
| 
 | |
| 		dtPoly* targetPoly = &target->polys[targetCon->poly];
 | |
| 		// Skip off-mesh connections which start location could not be connected at all.
 | |
| 		if (targetPoly->firstLink == DT_NULL_LINK)
 | |
| 			continue;
 | |
| 		
 | |
| 		const float halfExtents[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad };
 | |
| 		
 | |
| 		// Find polygon to connect to.
 | |
| 		const float* p = &targetCon->pos[3];
 | |
| 		float nearestPt[3];
 | |
| 		dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt);
 | |
| 		if (!ref)
 | |
| 			continue;
 | |
| 		// findNearestPoly may return too optimistic results, further check to make sure. 
 | |
| 		if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad))
 | |
| 			continue;
 | |
| 		// Make sure the location is on current mesh.
 | |
| 		float* v = &target->verts[targetPoly->verts[1]*3];
 | |
| 		dtVcopy(v, nearestPt);
 | |
| 				
 | |
| 		// Link off-mesh connection to target poly.
 | |
| 		unsigned int idx = allocLink(target);
 | |
| 		if (idx != DT_NULL_LINK)
 | |
| 		{
 | |
| 			dtLink* link = &target->links[idx];
 | |
| 			link->ref = ref;
 | |
| 			link->edge = (unsigned char)1;
 | |
| 			link->side = oppositeSide;
 | |
| 			link->bmin = link->bmax = 0;
 | |
| 			// Add to linked list.
 | |
| 			link->next = targetPoly->firstLink;
 | |
| 			targetPoly->firstLink = idx;
 | |
| 		}
 | |
| 		
 | |
| 		// Link target poly to off-mesh connection.
 | |
| 		if (targetCon->flags & DT_OFFMESH_CON_BIDIR)
 | |
| 		{
 | |
| 			unsigned int tidx = allocLink(tile);
 | |
| 			if (tidx != DT_NULL_LINK)
 | |
| 			{
 | |
| 				const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
 | |
| 				dtPoly* landPoly = &tile->polys[landPolyIdx];
 | |
| 				dtLink* link = &tile->links[tidx];
 | |
| 				link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly);
 | |
| 				link->edge = 0xff;
 | |
| 				link->side = (unsigned char)(side == -1 ? 0xff : side);
 | |
| 				link->bmin = link->bmax = 0;
 | |
| 				// Add to linked list.
 | |
| 				link->next = landPoly->firstLink;
 | |
| 				landPoly->firstLink = tidx;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| void dtNavMesh::connectIntLinks(dtMeshTile* tile)
 | |
| {
 | |
| 	if (!tile) return;
 | |
| 
 | |
| 	dtPolyRef base = getPolyRefBase(tile);
 | |
| 
 | |
| 	for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 	{
 | |
| 		dtPoly* poly = &tile->polys[i];
 | |
| 		poly->firstLink = DT_NULL_LINK;
 | |
| 
 | |
| 		if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 			continue;
 | |
| 			
 | |
| 		// Build edge links backwards so that the links will be
 | |
| 		// in the linked list from lowest index to highest.
 | |
| 		for (int j = poly->vertCount-1; j >= 0; --j)
 | |
| 		{
 | |
| 			// Skip hard and non-internal edges.
 | |
| 			if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue;
 | |
| 
 | |
| 			unsigned int idx = allocLink(tile);
 | |
| 			if (idx != DT_NULL_LINK)
 | |
| 			{
 | |
| 				dtLink* link = &tile->links[idx];
 | |
| 				link->ref = base | (dtPolyRef)(poly->neis[j]-1);
 | |
| 				link->edge = (unsigned char)j;
 | |
| 				link->side = 0xff;
 | |
| 				link->bmin = link->bmax = 0;
 | |
| 				// Add to linked list.
 | |
| 				link->next = poly->firstLink;
 | |
| 				poly->firstLink = idx;
 | |
| 			}
 | |
| 		}			
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile)
 | |
| {
 | |
| 	if (!tile) return;
 | |
| 	
 | |
| 	dtPolyRef base = getPolyRefBase(tile);
 | |
| 	
 | |
| 	// Base off-mesh connection start points.
 | |
| 	for (int i = 0; i < tile->header->offMeshConCount; ++i)
 | |
| 	{
 | |
| 		dtOffMeshConnection* con = &tile->offMeshCons[i];
 | |
| 		dtPoly* poly = &tile->polys[con->poly];
 | |
| 	
 | |
| 		const float halfExtents[3] = { con->rad, tile->header->walkableClimb, con->rad };
 | |
| 		
 | |
| 		// Find polygon to connect to.
 | |
| 		const float* p = &con->pos[0]; // First vertex
 | |
| 		float nearestPt[3];
 | |
| 		dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt);
 | |
| 		if (!ref) continue;
 | |
| 		// findNearestPoly may return too optimistic results, further check to make sure. 
 | |
| 		if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad))
 | |
| 			continue;
 | |
| 		// Make sure the location is on current mesh.
 | |
| 		float* v = &tile->verts[poly->verts[0]*3];
 | |
| 		dtVcopy(v, nearestPt);
 | |
| 
 | |
| 		// Link off-mesh connection to target poly.
 | |
| 		unsigned int idx = allocLink(tile);
 | |
| 		if (idx != DT_NULL_LINK)
 | |
| 		{
 | |
| 			dtLink* link = &tile->links[idx];
 | |
| 			link->ref = ref;
 | |
| 			link->edge = (unsigned char)0;
 | |
| 			link->side = 0xff;
 | |
| 			link->bmin = link->bmax = 0;
 | |
| 			// Add to linked list.
 | |
| 			link->next = poly->firstLink;
 | |
| 			poly->firstLink = idx;
 | |
| 		}
 | |
| 
 | |
| 		// Start end-point is always connect back to off-mesh connection. 
 | |
| 		unsigned int tidx = allocLink(tile);
 | |
| 		if (tidx != DT_NULL_LINK)
 | |
| 		{
 | |
| 			const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
 | |
| 			dtPoly* landPoly = &tile->polys[landPolyIdx];
 | |
| 			dtLink* link = &tile->links[tidx];
 | |
| 			link->ref = base | (dtPolyRef)(con->poly);
 | |
| 			link->edge = 0xff;
 | |
| 			link->side = 0xff;
 | |
| 			link->bmin = link->bmax = 0;
 | |
| 			// Add to linked list.
 | |
| 			link->next = landPoly->firstLink;
 | |
| 			landPoly->firstLink = tidx;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| namespace
 | |
| {
 | |
| 	template<bool onlyBoundary>
 | |
| 	void closestPointOnDetailEdges(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest)
 | |
| 	{
 | |
| 		const unsigned int ip = (unsigned int)(poly - tile->polys);
 | |
| 		const dtPolyDetail* pd = &tile->detailMeshes[ip];
 | |
| 
 | |
| 		float dmin = FLT_MAX;
 | |
| 		float tmin = 0;
 | |
| 		const float* pmin = 0;
 | |
| 		const float* pmax = 0;
 | |
| 
 | |
| 		for (int i = 0; i < pd->triCount; i++)
 | |
| 		{
 | |
| 			const unsigned char* tris = &tile->detailTris[(pd->triBase + i) * 4];
 | |
| 			const int ANY_BOUNDARY_EDGE =
 | |
| 				(DT_DETAIL_EDGE_BOUNDARY << 0) |
 | |
| 				(DT_DETAIL_EDGE_BOUNDARY << 2) |
 | |
| 				(DT_DETAIL_EDGE_BOUNDARY << 4);
 | |
| 			if (onlyBoundary && (tris[3] & ANY_BOUNDARY_EDGE) == 0)
 | |
| 				continue;
 | |
| 
 | |
| 			const float* v[3];
 | |
| 			for (int j = 0; j < 3; ++j)
 | |
| 			{
 | |
| 				if (tris[j] < poly->vertCount)
 | |
| 					v[j] = &tile->verts[poly->verts[tris[j]] * 3];
 | |
| 				else
 | |
| 					v[j] = &tile->detailVerts[(pd->vertBase + (tris[j] - poly->vertCount)) * 3];
 | |
| 			}
 | |
| 
 | |
| 			for (int k = 0, j = 2; k < 3; j = k++)
 | |
| 			{
 | |
| 				if ((dtGetDetailTriEdgeFlags(tris[3], j) & DT_DETAIL_EDGE_BOUNDARY) == 0 &&
 | |
| 					(onlyBoundary || tris[j] < tris[k]))
 | |
| 				{
 | |
| 					// Only looking at boundary edges and this is internal, or
 | |
| 					// this is an inner edge that we will see again or have already seen.
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				float t;
 | |
| 				float d = dtDistancePtSegSqr2D(pos, v[j], v[k], t);
 | |
| 				if (d < dmin)
 | |
| 				{
 | |
| 					dmin = d;
 | |
| 					tmin = t;
 | |
| 					pmin = v[j];
 | |
| 					pmax = v[k];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dtVlerp(closest, pmin, pmax, tmin);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool dtNavMesh::getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const
 | |
| {
 | |
| 	// Off-mesh connections do not have detail polys and getting height
 | |
| 	// over them does not make sense.
 | |
| 	if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 		return false;
 | |
| 
 | |
| 	const unsigned int ip = (unsigned int)(poly - tile->polys);
 | |
| 	const dtPolyDetail* pd = &tile->detailMeshes[ip];
 | |
| 	
 | |
| 	float verts[DT_VERTS_PER_POLYGON*3];	
 | |
| 	const int nv = poly->vertCount;
 | |
| 	for (int i = 0; i < nv; ++i)
 | |
| 		dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
 | |
| 	
 | |
| 	if (!dtPointInPolygon(pos, verts, nv))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!height)
 | |
| 		return true;
 | |
| 	
 | |
| 	// Find height at the location.
 | |
| 	for (int j = 0; j < pd->triCount; ++j)
 | |
| 	{
 | |
| 		const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
 | |
| 		const float* v[3];
 | |
| 		for (int k = 0; k < 3; ++k)
 | |
| 		{
 | |
| 			if (t[k] < poly->vertCount)
 | |
| 				v[k] = &tile->verts[poly->verts[t[k]]*3];
 | |
| 			else
 | |
| 				v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
 | |
| 		}
 | |
| 		float h;
 | |
| 		if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
 | |
| 		{
 | |
| 			*height = h;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// If all triangle checks failed above (can happen with degenerate triangles
 | |
| 	// or larger floating point values) the point is on an edge, so just select
 | |
| 	// closest. This should almost never happen so the extra iteration here is
 | |
| 	// ok.
 | |
| 	float closest[3];
 | |
| 	closestPointOnDetailEdges<false>(tile, poly, pos, closest);
 | |
| 	*height = closest[1];
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
 | |
| {
 | |
| 	const dtMeshTile* tile = 0;
 | |
| 	const dtPoly* poly = 0;
 | |
| 	getTileAndPolyByRefUnsafe(ref, &tile, &poly);
 | |
| 
 | |
| 	dtVcopy(closest, pos);
 | |
| 	if (getPolyHeight(tile, poly, pos, &closest[1]))
 | |
| 	{
 | |
| 		if (posOverPoly)
 | |
| 			*posOverPoly = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (posOverPoly)
 | |
| 		*posOverPoly = false;
 | |
| 
 | |
| 	// Off-mesh connections don't have detail polygons.
 | |
| 	if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 	{
 | |
| 		const float* v0 = &tile->verts[poly->verts[0]*3];
 | |
| 		const float* v1 = &tile->verts[poly->verts[1]*3];
 | |
| 		float t;
 | |
| 		dtDistancePtSegSqr2D(pos, v0, v1, t);
 | |
| 		dtVlerp(closest, v0, v1, t);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Outside poly that is not an offmesh connection.
 | |
| 	closestPointOnDetailEdges<true>(tile, poly, pos, closest);
 | |
| }
 | |
| 
 | |
| dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile,
 | |
| 										   const float* center, const float* halfExtents,
 | |
| 										   float* nearestPt) const
 | |
| {
 | |
| 	float bmin[3], bmax[3];
 | |
| 	dtVsub(bmin, center, halfExtents);
 | |
| 	dtVadd(bmax, center, halfExtents);
 | |
| 	
 | |
| 	// Get nearby polygons from proximity grid.
 | |
| 	dtPolyRef polys[128];
 | |
| 	int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128);
 | |
| 	
 | |
| 	// Find nearest polygon amongst the nearby polygons.
 | |
| 	dtPolyRef nearest = 0;
 | |
| 	float nearestDistanceSqr = FLT_MAX;
 | |
| 	for (int i = 0; i < polyCount; ++i)
 | |
| 	{
 | |
| 		dtPolyRef ref = polys[i];
 | |
| 		float closestPtPoly[3];
 | |
| 		float diff[3];
 | |
| 		bool posOverPoly = false;
 | |
| 		float d;
 | |
| 		closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly);
 | |
| 
 | |
| 		// If a point is directly over a polygon and closer than
 | |
| 		// climb height, favor that instead of straight line nearest point.
 | |
| 		dtVsub(diff, center, closestPtPoly);
 | |
| 		if (posOverPoly)
 | |
| 		{
 | |
| 			d = dtAbs(diff[1]) - tile->header->walkableClimb;
 | |
| 			d = d > 0 ? d*d : 0;			
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			d = dtVlenSqr(diff);
 | |
| 		}
 | |
| 		
 | |
| 		if (d < nearestDistanceSqr)
 | |
| 		{
 | |
| 			dtVcopy(nearestPt, closestPtPoly);
 | |
| 			nearestDistanceSqr = d;
 | |
| 			nearest = ref;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return nearest;
 | |
| }
 | |
| 
 | |
| int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
 | |
| 								   dtPolyRef* polys, const int maxPolys) const
 | |
| {
 | |
| 	if (tile->bvTree)
 | |
| 	{
 | |
| 		const dtBVNode* node = &tile->bvTree[0];
 | |
| 		const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
 | |
| 		const float* tbmin = tile->header->bmin;
 | |
| 		const float* tbmax = tile->header->bmax;
 | |
| 		const float qfac = tile->header->bvQuantFactor;
 | |
| 		
 | |
| 		// Calculate quantized box
 | |
| 		unsigned short bmin[3], bmax[3];
 | |
| 		// dtClamp query box to world box.
 | |
| 		float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
 | |
| 		float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
 | |
| 		float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
 | |
| 		float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
 | |
| 		float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
 | |
| 		float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
 | |
| 		// Quantize
 | |
| 		bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
 | |
| 		bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
 | |
| 		bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
 | |
| 		bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
 | |
| 		bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
 | |
| 		bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
 | |
| 		
 | |
| 		// Traverse tree
 | |
| 		dtPolyRef base = getPolyRefBase(tile);
 | |
| 		int n = 0;
 | |
| 		while (node < end)
 | |
| 		{
 | |
| 			const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
 | |
| 			const bool isLeafNode = node->i >= 0;
 | |
| 			
 | |
| 			if (isLeafNode && overlap)
 | |
| 			{
 | |
| 				if (n < maxPolys)
 | |
| 					polys[n++] = base | (dtPolyRef)node->i;
 | |
| 			}
 | |
| 			
 | |
| 			if (overlap || isLeafNode)
 | |
| 				node++;
 | |
| 			else
 | |
| 			{
 | |
| 				const int escapeIndex = -node->i;
 | |
| 				node += escapeIndex;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		return n;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		float bmin[3], bmax[3];
 | |
| 		int n = 0;
 | |
| 		dtPolyRef base = getPolyRefBase(tile);
 | |
| 		for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 		{
 | |
| 			dtPoly* p = &tile->polys[i];
 | |
| 			// Do not return off-mesh connection polygons.
 | |
| 			if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 				continue;
 | |
| 			// Calc polygon bounds.
 | |
| 			const float* v = &tile->verts[p->verts[0]*3];
 | |
| 			dtVcopy(bmin, v);
 | |
| 			dtVcopy(bmax, v);
 | |
| 			for (int j = 1; j < p->vertCount; ++j)
 | |
| 			{
 | |
| 				v = &tile->verts[p->verts[j]*3];
 | |
| 				dtVmin(bmin, v);
 | |
| 				dtVmax(bmax, v);
 | |
| 			}
 | |
| 			if (dtOverlapBounds(qmin,qmax, bmin,bmax))
 | |
| 			{
 | |
| 				if (n < maxPolys)
 | |
| 					polys[n++] = base | (dtPolyRef)i;
 | |
| 			}
 | |
| 		}
 | |
| 		return n;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// The add operation will fail if the data is in the wrong format, the allocated tile
 | |
| /// space is full, or there is a tile already at the specified reference.
 | |
| ///
 | |
| /// The lastRef parameter is used to restore a tile with the same tile
 | |
| /// reference it had previously used.  In this case the #dtPolyRef's for the
 | |
| /// tile will be restored to the same values they were before the tile was 
 | |
| /// removed.
 | |
| ///
 | |
| /// The nav mesh assumes exclusive access to the data passed and will make
 | |
| /// changes to the dynamic portion of the data. For that reason the data
 | |
| /// should not be reused in other nav meshes until the tile has been successfully
 | |
| /// removed from this nav mesh.
 | |
| ///
 | |
| /// @see dtCreateNavMeshData, #removeTile
 | |
| dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags,
 | |
| 							dtTileRef lastRef, dtTileRef* result)
 | |
| {
 | |
| 	// Make sure the data is in right format.
 | |
| 	dtMeshHeader* header = (dtMeshHeader*)data;
 | |
| 	if (header->magic != DT_NAVMESH_MAGIC)
 | |
| 		return DT_FAILURE | DT_WRONG_MAGIC;
 | |
| 	if (header->version != DT_NAVMESH_VERSION)
 | |
| 		return DT_FAILURE | DT_WRONG_VERSION;
 | |
| 
 | |
| #ifndef DT_POLYREF64
 | |
| 	// Do not allow adding more polygons than specified in the NavMesh's maxPolys constraint.
 | |
| 	// Otherwise, the poly ID cannot be represented with the given number of bits.
 | |
| 	if (m_polyBits < dtIlog2(dtNextPow2((unsigned int)header->polyCount)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| #endif
 | |
| 		
 | |
| 	// Make sure the location is free.
 | |
| 	if (getTileAt(header->x, header->y, header->layer))
 | |
| 		return DT_FAILURE | DT_ALREADY_OCCUPIED;
 | |
| 		
 | |
| 	// Allocate a tile.
 | |
| 	dtMeshTile* tile = 0;
 | |
| 	if (!lastRef)
 | |
| 	{
 | |
| 		if (m_nextFree)
 | |
| 		{
 | |
| 			tile = m_nextFree;
 | |
| 			m_nextFree = tile->next;
 | |
| 			tile->next = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Try to relocate the tile to specific index with same salt.
 | |
| 		int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef);
 | |
| 		if (tileIndex >= m_maxTiles)
 | |
| 			return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 		// Try to find the specific tile id from the free list.
 | |
| 		dtMeshTile* target = &m_tiles[tileIndex];
 | |
| 		dtMeshTile* prev = 0;
 | |
| 		tile = m_nextFree;
 | |
| 		while (tile && tile != target)
 | |
| 		{
 | |
| 			prev = tile;
 | |
| 			tile = tile->next;
 | |
| 		}
 | |
| 		// Could not find the correct location.
 | |
| 		if (tile != target)
 | |
| 			return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 		// Remove from freelist
 | |
| 		if (!prev)
 | |
| 			m_nextFree = tile->next;
 | |
| 		else
 | |
| 			prev->next = tile->next;
 | |
| 
 | |
| 		// Restore salt.
 | |
| 		tile->salt = decodePolyIdSalt((dtPolyRef)lastRef);
 | |
| 	}
 | |
| 
 | |
| 	// Make sure we could allocate a tile.
 | |
| 	if (!tile)
 | |
| 		return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 	
 | |
| 	// Insert tile into the position lut.
 | |
| 	int h = computeTileHash(header->x, header->y, m_tileLutMask);
 | |
| 	tile->next = m_posLookup[h];
 | |
| 	m_posLookup[h] = tile;
 | |
| 	
 | |
| 	// Patch header pointers.
 | |
| 	const int headerSize = dtAlign4(sizeof(dtMeshHeader));
 | |
| 	const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount);
 | |
| 	const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount);
 | |
| 	const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount));
 | |
| 	const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount);
 | |
| 	const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount);
 | |
| 	const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount);
 | |
| 	const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount);
 | |
| 	const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
 | |
| 	
 | |
| 	unsigned char* d = data + headerSize;
 | |
| 	tile->verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
 | |
| 	tile->polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
 | |
| 	tile->links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize);
 | |
| 	tile->detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
 | |
| 	tile->detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
 | |
| 	tile->detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
 | |
| 	tile->bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize);
 | |
| 	tile->offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize);
 | |
| 
 | |
| 	// If there are no items in the bvtree, reset the tree pointer.
 | |
| 	if (!bvtreeSize)
 | |
| 		tile->bvTree = 0;
 | |
| 
 | |
| 	// Build links freelist
 | |
| 	tile->linksFreeList = 0;
 | |
| 	tile->links[header->maxLinkCount-1].next = DT_NULL_LINK;
 | |
| 	for (int i = 0; i < header->maxLinkCount-1; ++i)
 | |
| 		tile->links[i].next = i+1;
 | |
| 
 | |
| 	// Init tile.
 | |
| 	tile->header = header;
 | |
| 	tile->data = data;
 | |
| 	tile->dataSize = dataSize;
 | |
| 	tile->flags = flags;
 | |
| 
 | |
| 	connectIntLinks(tile);
 | |
| 
 | |
| 	// Base off-mesh connections to their starting polygons and connect connections inside the tile.
 | |
| 	baseOffMeshLinks(tile);
 | |
| 	connectExtOffMeshLinks(tile, tile, -1);
 | |
| 
 | |
| 	// Create connections with neighbour tiles.
 | |
| 	static const int MAX_NEIS = 32;
 | |
| 	dtMeshTile* neis[MAX_NEIS];
 | |
| 	int nneis;
 | |
| 	
 | |
| 	// Connect with layers in current tile.
 | |
| 	nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS);
 | |
| 	for (int j = 0; j < nneis; ++j)
 | |
| 	{
 | |
| 		if (neis[j] == tile)
 | |
| 			continue;
 | |
| 	
 | |
| 		connectExtLinks(tile, neis[j], -1);
 | |
| 		connectExtLinks(neis[j], tile, -1);
 | |
| 		connectExtOffMeshLinks(tile, neis[j], -1);
 | |
| 		connectExtOffMeshLinks(neis[j], tile, -1);
 | |
| 	}
 | |
| 	
 | |
| 	// Connect with neighbour tiles.
 | |
| 	for (int i = 0; i < 8; ++i)
 | |
| 	{
 | |
| 		nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS);
 | |
| 		for (int j = 0; j < nneis; ++j)
 | |
| 		{
 | |
| 			connectExtLinks(tile, neis[j], i);
 | |
| 			connectExtLinks(neis[j], tile, dtOppositeTile(i));
 | |
| 			connectExtOffMeshLinks(tile, neis[j], i);
 | |
| 			connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i));
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if (result)
 | |
| 		*result = getTileRef(tile);
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const
 | |
| {
 | |
| 	// Find tile based on hash.
 | |
| 	int h = computeTileHash(x,y,m_tileLutMask);
 | |
| 	dtMeshTile* tile = m_posLookup[h];
 | |
| 	while (tile)
 | |
| 	{
 | |
| 		if (tile->header &&
 | |
| 			tile->header->x == x &&
 | |
| 			tile->header->y == y &&
 | |
| 			tile->header->layer == layer)
 | |
| 		{
 | |
| 			return tile;
 | |
| 		}
 | |
| 		tile = tile->next;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const
 | |
| {
 | |
| 	int nx = x, ny = y;
 | |
| 	switch (side)
 | |
| 	{
 | |
| 		case 0: nx++; break;
 | |
| 		case 1: nx++; ny++; break;
 | |
| 		case 2: ny++; break;
 | |
| 		case 3: nx--; ny++; break;
 | |
| 		case 4: nx--; break;
 | |
| 		case 5: nx--; ny--; break;
 | |
| 		case 6: ny--; break;
 | |
| 		case 7: nx++; ny--; break;
 | |
| 	};
 | |
| 
 | |
| 	return getTilesAt(nx, ny, tiles, maxTiles);
 | |
| }
 | |
| 
 | |
| int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const
 | |
| {
 | |
| 	int n = 0;
 | |
| 	
 | |
| 	// Find tile based on hash.
 | |
| 	int h = computeTileHash(x,y,m_tileLutMask);
 | |
| 	dtMeshTile* tile = m_posLookup[h];
 | |
| 	while (tile)
 | |
| 	{
 | |
| 		if (tile->header &&
 | |
| 			tile->header->x == x &&
 | |
| 			tile->header->y == y)
 | |
| 		{
 | |
| 			if (n < maxTiles)
 | |
| 				tiles[n++] = tile;
 | |
| 		}
 | |
| 		tile = tile->next;
 | |
| 	}
 | |
| 	
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// This function will not fail if the tiles array is too small to hold the
 | |
| /// entire result set.  It will simply fill the array to capacity.
 | |
| int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const
 | |
| {
 | |
| 	int n = 0;
 | |
| 	
 | |
| 	// Find tile based on hash.
 | |
| 	int h = computeTileHash(x,y,m_tileLutMask);
 | |
| 	dtMeshTile* tile = m_posLookup[h];
 | |
| 	while (tile)
 | |
| 	{
 | |
| 		if (tile->header &&
 | |
| 			tile->header->x == x &&
 | |
| 			tile->header->y == y)
 | |
| 		{
 | |
| 			if (n < maxTiles)
 | |
| 				tiles[n++] = tile;
 | |
| 		}
 | |
| 		tile = tile->next;
 | |
| 	}
 | |
| 	
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const
 | |
| {
 | |
| 	// Find tile based on hash.
 | |
| 	int h = computeTileHash(x,y,m_tileLutMask);
 | |
| 	dtMeshTile* tile = m_posLookup[h];
 | |
| 	while (tile)
 | |
| 	{
 | |
| 		if (tile->header &&
 | |
| 			tile->header->x == x &&
 | |
| 			tile->header->y == y &&
 | |
| 			tile->header->layer == layer)
 | |
| 		{
 | |
| 			return getTileRef(tile);
 | |
| 		}
 | |
| 		tile = tile->next;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const
 | |
| {
 | |
| 	if (!ref)
 | |
| 		return 0;
 | |
| 	unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
 | |
| 	unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
 | |
| 	if ((int)tileIndex >= m_maxTiles)
 | |
| 		return 0;
 | |
| 	const dtMeshTile* tile = &m_tiles[tileIndex];
 | |
| 	if (tile->salt != tileSalt)
 | |
| 		return 0;
 | |
| 	return tile;
 | |
| }
 | |
| 
 | |
| int dtNavMesh::getMaxTiles() const
 | |
| {
 | |
| 	return m_maxTiles;
 | |
| }
 | |
| 
 | |
| dtMeshTile* dtNavMesh::getTile(int i)
 | |
| {
 | |
| 	return &m_tiles[i];
 | |
| }
 | |
| 
 | |
| const dtMeshTile* dtNavMesh::getTile(int i) const
 | |
| {
 | |
| 	return &m_tiles[i];
 | |
| }
 | |
| 
 | |
| void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const
 | |
| {
 | |
| 	*tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth);
 | |
| 	*ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight);
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
 | |
| {
 | |
| 	if (!ref) return DT_FAILURE;
 | |
| 	unsigned int salt, it, ip;
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	*tile = &m_tiles[it];
 | |
| 	*poly = &m_tiles[it].polys[ip];
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// @warning Only use this function if it is known that the provided polygon
 | |
| /// reference is valid. This function is faster than #getTileAndPolyByRef, but
 | |
| /// it does not validate the reference.
 | |
| void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
 | |
| {
 | |
| 	unsigned int salt, it, ip;
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	*tile = &m_tiles[it];
 | |
| 	*poly = &m_tiles[it].polys[ip];
 | |
| }
 | |
| 
 | |
| bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const
 | |
| {
 | |
| 	if (!ref) return false;
 | |
| 	unsigned int salt, it, ip;
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return false;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
 | |
| 	if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// This function returns the data for the tile so that, if desired,
 | |
| /// it can be added back to the navigation mesh at a later point.
 | |
| ///
 | |
| /// @see #addTile
 | |
| dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize)
 | |
| {
 | |
| 	if (!ref)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
 | |
| 	unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
 | |
| 	if ((int)tileIndex >= m_maxTiles)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	dtMeshTile* tile = &m_tiles[tileIndex];
 | |
| 	if (tile->salt != tileSalt)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	// Remove tile from hash lookup.
 | |
| 	int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask);
 | |
| 	dtMeshTile* prev = 0;
 | |
| 	dtMeshTile* cur = m_posLookup[h];
 | |
| 	while (cur)
 | |
| 	{
 | |
| 		if (cur == tile)
 | |
| 		{
 | |
| 			if (prev)
 | |
| 				prev->next = cur->next;
 | |
| 			else
 | |
| 				m_posLookup[h] = cur->next;
 | |
| 			break;
 | |
| 		}
 | |
| 		prev = cur;
 | |
| 		cur = cur->next;
 | |
| 	}
 | |
| 	
 | |
| 	// Remove connections to neighbour tiles.
 | |
| 	static const int MAX_NEIS = 32;
 | |
| 	dtMeshTile* neis[MAX_NEIS];
 | |
| 	int nneis;
 | |
| 	
 | |
| 	// Disconnect from other layers in current tile.
 | |
| 	nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS);
 | |
| 	for (int j = 0; j < nneis; ++j)
 | |
| 	{
 | |
| 		if (neis[j] == tile) continue;
 | |
| 		unconnectLinks(neis[j], tile);
 | |
| 	}
 | |
| 	
 | |
| 	// Disconnect from neighbour tiles.
 | |
| 	for (int i = 0; i < 8; ++i)
 | |
| 	{
 | |
| 		nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS);
 | |
| 		for (int j = 0; j < nneis; ++j)
 | |
| 			unconnectLinks(neis[j], tile);
 | |
| 	}
 | |
| 		
 | |
| 	// Reset tile.
 | |
| 	if (tile->flags & DT_TILE_FREE_DATA)
 | |
| 	{
 | |
| 		// Owns data
 | |
| 		dtFree(tile->data);
 | |
| 		tile->data = 0;
 | |
| 		tile->dataSize = 0;
 | |
| 		if (data) *data = 0;
 | |
| 		if (dataSize) *dataSize = 0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		if (data) *data = tile->data;
 | |
| 		if (dataSize) *dataSize = tile->dataSize;
 | |
| 	}
 | |
| 
 | |
| 	tile->header = 0;
 | |
| 	tile->flags = 0;
 | |
| 	tile->linksFreeList = 0;
 | |
| 	tile->polys = 0;
 | |
| 	tile->verts = 0;
 | |
| 	tile->links = 0;
 | |
| 	tile->detailMeshes = 0;
 | |
| 	tile->detailVerts = 0;
 | |
| 	tile->detailTris = 0;
 | |
| 	tile->bvTree = 0;
 | |
| 	tile->offMeshCons = 0;
 | |
| 
 | |
| 	// Update salt, salt should never be zero.
 | |
| #ifdef DT_POLYREF64
 | |
| 	tile->salt = (tile->salt+1) & ((1<<DT_SALT_BITS)-1);
 | |
| #else
 | |
| 	tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1);
 | |
| #endif
 | |
| 	if (tile->salt == 0)
 | |
| 		tile->salt++;
 | |
| 
 | |
| 	// Add to free list.
 | |
| 	tile->next = m_nextFree;
 | |
| 	m_nextFree = tile;
 | |
| 
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const
 | |
| {
 | |
| 	if (!tile) return 0;
 | |
| 	const unsigned int it = (unsigned int)(tile - m_tiles);
 | |
| 	return (dtTileRef)encodePolyId(tile->salt, it, 0);
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// Example use case:
 | |
| /// @code
 | |
| ///
 | |
| /// const dtPolyRef base = navmesh->getPolyRefBase(tile);
 | |
| /// for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| /// {
 | |
| ///     const dtPoly* p = &tile->polys[i];
 | |
| ///     const dtPolyRef ref = base | (dtPolyRef)i;
 | |
| ///     
 | |
| ///     // Use the reference to access the polygon data.
 | |
| /// }
 | |
| /// @endcode
 | |
| dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const
 | |
| {
 | |
| 	if (!tile) return 0;
 | |
| 	const unsigned int it = (unsigned int)(tile - m_tiles);
 | |
| 	return encodePolyId(tile->salt, it, 0);
 | |
| }
 | |
| 
 | |
| struct dtTileState
 | |
| {
 | |
| 	int magic;								// Magic number, used to identify the data.
 | |
| 	int version;							// Data version number.
 | |
| 	dtTileRef ref;							// Tile ref at the time of storing the data.
 | |
| };
 | |
| 
 | |
| struct dtPolyState
 | |
| {
 | |
| 	unsigned short flags;						// Flags (see dtPolyFlags).
 | |
| 	unsigned char area;							// Area ID of the polygon.
 | |
| };
 | |
| 
 | |
| ///  @see #storeTileState
 | |
| int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const
 | |
| {
 | |
| 	if (!tile) return 0;
 | |
| 	const int headerSize = dtAlign4(sizeof(dtTileState));
 | |
| 	const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
 | |
| 	return headerSize + polyStateSize;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// Tile state includes non-structural data such as polygon flags, area ids, etc.
 | |
| /// @note The state data is only valid until the tile reference changes.
 | |
| /// @see #getTileStateSize, #restoreTileState
 | |
| dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const
 | |
| {
 | |
| 	// Make sure there is enough space to store the state.
 | |
| 	const int sizeReq = getTileStateSize(tile);
 | |
| 	if (maxDataSize < sizeReq)
 | |
| 		return DT_FAILURE | DT_BUFFER_TOO_SMALL;
 | |
| 		
 | |
| 	dtTileState* tileState = dtGetThenAdvanceBufferPointer<dtTileState>(data, dtAlign4(sizeof(dtTileState)));
 | |
| 	dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount));
 | |
| 	
 | |
| 	// Store tile state.
 | |
| 	tileState->magic = DT_NAVMESH_STATE_MAGIC;
 | |
| 	tileState->version = DT_NAVMESH_STATE_VERSION;
 | |
| 	tileState->ref = getTileRef(tile);
 | |
| 	
 | |
| 	// Store per poly state.
 | |
| 	for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 	{
 | |
| 		const dtPoly* p = &tile->polys[i];
 | |
| 		dtPolyState* s = &polyStates[i];
 | |
| 		s->flags = p->flags;
 | |
| 		s->area = p->getArea();
 | |
| 	}
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// Tile state includes non-structural data such as polygon flags, area ids, etc.
 | |
| /// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's.
 | |
| /// @see #storeTileState
 | |
| dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize)
 | |
| {
 | |
| 	// Make sure there is enough space to store the state.
 | |
| 	const int sizeReq = getTileStateSize(tile);
 | |
| 	if (maxDataSize < sizeReq)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	const dtTileState* tileState = dtGetThenAdvanceBufferPointer<const dtTileState>(data, dtAlign4(sizeof(dtTileState)));
 | |
| 	const dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<const dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount));
 | |
| 	
 | |
| 	// Check that the restore is possible.
 | |
| 	if (tileState->magic != DT_NAVMESH_STATE_MAGIC)
 | |
| 		return DT_FAILURE | DT_WRONG_MAGIC;
 | |
| 	if (tileState->version != DT_NAVMESH_STATE_VERSION)
 | |
| 		return DT_FAILURE | DT_WRONG_VERSION;
 | |
| 	if (tileState->ref != getTileRef(tile))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	// Restore per poly state.
 | |
| 	for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 	{
 | |
| 		dtPoly* p = &tile->polys[i];
 | |
| 		const dtPolyState* s = &polyStates[i];
 | |
| 		p->flags = s->flags;
 | |
| 		p->setArea(s->area);
 | |
| 	}
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// Off-mesh connections are stored in the navigation mesh as special 2-vertex 
 | |
| /// polygons with a single edge. At least one of the vertices is expected to be 
 | |
| /// inside a normal polygon. So an off-mesh connection is "entered" from a 
 | |
| /// normal polygon at one of its endpoints. This is the polygon identified by 
 | |
| /// the prevRef parameter.
 | |
| dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const
 | |
| {
 | |
| 	unsigned int salt, it, ip;
 | |
| 
 | |
| 	if (!polyRef)
 | |
| 		return DT_FAILURE;
 | |
| 	
 | |
| 	// Get current polygon
 | |
| 	decodePolyId(polyRef, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	const dtMeshTile* tile = &m_tiles[it];
 | |
| 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	const dtPoly* poly = &tile->polys[ip];
 | |
| 
 | |
| 	// Make sure that the current poly is indeed off-mesh link.
 | |
| 	if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 		return DT_FAILURE;
 | |
| 
 | |
| 	// Figure out which way to hand out the vertices.
 | |
| 	int idx0 = 0, idx1 = 1;
 | |
| 	
 | |
| 	// Find link that points to first vertex.
 | |
| 	for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
 | |
| 	{
 | |
| 		if (tile->links[i].edge == 0)
 | |
| 		{
 | |
| 			if (tile->links[i].ref != prevRef)
 | |
| 			{
 | |
| 				idx0 = 1;
 | |
| 				idx1 = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]);
 | |
| 	dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]);
 | |
| 
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| 
 | |
| const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const
 | |
| {
 | |
| 	unsigned int salt, it, ip;
 | |
| 	
 | |
| 	if (!ref)
 | |
| 		return 0;
 | |
| 	
 | |
| 	// Get current polygon
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return 0;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
 | |
| 	const dtMeshTile* tile = &m_tiles[it];
 | |
| 	if (ip >= (unsigned int)tile->header->polyCount) return 0;
 | |
| 	const dtPoly* poly = &tile->polys[ip];
 | |
| 	
 | |
| 	// Make sure that the current poly is indeed off-mesh link.
 | |
| 	if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 		return 0;
 | |
| 
 | |
| 	const unsigned int idx =  ip - tile->header->offMeshBase;
 | |
| 	dtAssert(idx < (unsigned int)tile->header->offMeshConCount);
 | |
| 	return &tile->offMeshCons[idx];
 | |
| }
 | |
| 
 | |
| 
 | |
| dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags)
 | |
| {
 | |
| 	if (!ref) return DT_FAILURE;
 | |
| 	unsigned int salt, it, ip;
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	dtMeshTile* tile = &m_tiles[it];
 | |
| 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	dtPoly* poly = &tile->polys[ip];
 | |
| 	
 | |
| 	// Change flags.
 | |
| 	poly->flags = flags;
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const
 | |
| {
 | |
| 	if (!ref) return DT_FAILURE;
 | |
| 	unsigned int salt, it, ip;
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	const dtMeshTile* tile = &m_tiles[it];
 | |
| 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	const dtPoly* poly = &tile->polys[ip];
 | |
| 
 | |
| 	*resultFlags = poly->flags;
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area)
 | |
| {
 | |
| 	if (!ref) return DT_FAILURE;
 | |
| 	unsigned int salt, it, ip;
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	dtMeshTile* tile = &m_tiles[it];
 | |
| 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	dtPoly* poly = &tile->polys[ip];
 | |
| 	
 | |
| 	poly->setArea(area);
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const
 | |
| {
 | |
| 	if (!ref) return DT_FAILURE;
 | |
| 	unsigned int salt, it, ip;
 | |
| 	decodePolyId(ref, salt, it, ip);
 | |
| 	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	const dtMeshTile* tile = &m_tiles[it];
 | |
| 	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	const dtPoly* poly = &tile->polys[ip];
 | |
| 	
 | |
| 	*resultArea = poly->getArea();
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 |