forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			3680 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3680 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #include <float.h>
 | |
| #include <string.h>
 | |
| #include "DetourNavMeshQuery.h"
 | |
| #include "DetourNavMesh.h"
 | |
| #include "DetourNode.h"
 | |
| #include "DetourCommon.h"
 | |
| #include "DetourMath.h"
 | |
| #include "DetourAlloc.h"
 | |
| #include "DetourAssert.h"
 | |
| #include <new>
 | |
| 
 | |
| /// @class dtQueryFilter
 | |
| ///
 | |
| /// <b>The Default Implementation</b>
 | |
| /// 
 | |
| /// At construction: All area costs default to 1.0.  All flags are included
 | |
| /// and none are excluded.
 | |
| /// 
 | |
| /// If a polygon has both an include and an exclude flag, it will be excluded.
 | |
| /// 
 | |
| /// The way filtering works, a navigation mesh polygon must have at least one flag 
 | |
| /// set to ever be considered by a query. So a polygon with no flags will never
 | |
| /// be considered.
 | |
| ///
 | |
| /// Setting the include flags to 0 will result in all polygons being excluded.
 | |
| ///
 | |
| /// <b>Custom Implementations</b>
 | |
| /// 
 | |
| /// DT_VIRTUAL_QUERYFILTER must be defined in order to extend this class.
 | |
| /// 
 | |
| /// Implement a custom query filter by overriding the virtual passFilter() 
 | |
| /// and getCost() functions. If this is done, both functions should be as 
 | |
| /// fast as possible. Use cached local copies of data rather than accessing 
 | |
| /// your own objects where possible.
 | |
| /// 
 | |
| /// Custom implementations do not need to adhere to the flags or cost logic 
 | |
| /// used by the default implementation.  
 | |
| /// 
 | |
| /// In order for A* searches to work properly, the cost should be proportional to
 | |
| /// the travel distance. Implementing a cost modifier less than 1.0 is likely 
 | |
| /// to lead to problems during pathfinding.
 | |
| ///
 | |
| /// @see dtNavMeshQuery
 | |
| 
 | |
| dtQueryFilter::dtQueryFilter() :
 | |
| 	m_includeFlags(0xffff),
 | |
| 	m_excludeFlags(0)
 | |
| {
 | |
| 	for (int i = 0; i < DT_MAX_AREAS; ++i)
 | |
| 		m_areaCost[i] = 1.0f;
 | |
| }
 | |
| 
 | |
| #ifdef DT_VIRTUAL_QUERYFILTER
 | |
| bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/,
 | |
| 							   const dtMeshTile* /*tile*/,
 | |
| 							   const dtPoly* poly) const
 | |
| {
 | |
| 	return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0;
 | |
| }
 | |
| 
 | |
| float dtQueryFilter::getCost(const float* pa, const float* pb,
 | |
| 							 const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/,
 | |
| 							 const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly,
 | |
| 							 const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const
 | |
| {
 | |
| 	return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()];
 | |
| }
 | |
| #else
 | |
| inline bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/,
 | |
| 									  const dtMeshTile* /*tile*/,
 | |
| 									  const dtPoly* poly) const
 | |
| {
 | |
| 	return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0;
 | |
| }
 | |
| 
 | |
| inline float dtQueryFilter::getCost(const float* pa, const float* pb,
 | |
| 									const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/,
 | |
| 									const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly,
 | |
| 									const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const
 | |
| {
 | |
| 	return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()];
 | |
| }
 | |
| #endif	
 | |
| 	
 | |
| static const float H_SCALE = 0.999f; // Search heuristic scale.
 | |
| 
 | |
| 
 | |
| dtNavMeshQuery* dtAllocNavMeshQuery()
 | |
| {
 | |
| 	void* mem = dtAlloc(sizeof(dtNavMeshQuery), DT_ALLOC_PERM);
 | |
| 	if (!mem) return 0;
 | |
| 	return new(mem) dtNavMeshQuery;
 | |
| }
 | |
| 
 | |
| void dtFreeNavMeshQuery(dtNavMeshQuery* navmesh)
 | |
| {
 | |
| 	if (!navmesh) return;
 | |
| 	navmesh->~dtNavMeshQuery();
 | |
| 	dtFree(navmesh);
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| /// @class dtNavMeshQuery
 | |
| ///
 | |
| /// For methods that support undersized buffers, if the buffer is too small 
 | |
| /// to hold the entire result set the return status of the method will include 
 | |
| /// the #DT_BUFFER_TOO_SMALL flag.
 | |
| ///
 | |
| /// Constant member functions can be used by multiple clients without side
 | |
| /// effects. (E.g. No change to the closed list. No impact on an in-progress
 | |
| /// sliced path query. Etc.)
 | |
| /// 
 | |
| /// Walls and portals: A @e wall is a polygon segment that is 
 | |
| /// considered impassable. A @e portal is a passable segment between polygons.
 | |
| /// A portal may be treated as a wall based on the dtQueryFilter used for a query.
 | |
| ///
 | |
| /// @see dtNavMesh, dtQueryFilter, #dtAllocNavMeshQuery(), #dtAllocNavMeshQuery()
 | |
| 
 | |
| dtNavMeshQuery::dtNavMeshQuery() :
 | |
| 	m_nav(0),
 | |
| 	m_tinyNodePool(0),
 | |
| 	m_nodePool(0),
 | |
| 	m_openList(0)
 | |
| {
 | |
| 	memset(&m_query, 0, sizeof(dtQueryData));
 | |
| }
 | |
| 
 | |
| dtNavMeshQuery::~dtNavMeshQuery()
 | |
| {
 | |
| 	if (m_tinyNodePool)
 | |
| 		m_tinyNodePool->~dtNodePool();
 | |
| 	if (m_nodePool)
 | |
| 		m_nodePool->~dtNodePool();
 | |
| 	if (m_openList)
 | |
| 		m_openList->~dtNodeQueue();
 | |
| 	dtFree(m_tinyNodePool);
 | |
| 	dtFree(m_nodePool);
 | |
| 	dtFree(m_openList);
 | |
| }
 | |
| 
 | |
| /// @par 
 | |
| ///
 | |
| /// Must be the first function called after construction, before other
 | |
| /// functions are used.
 | |
| ///
 | |
| /// This function can be used multiple times.
 | |
| dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes)
 | |
| {
 | |
| 	if (maxNodes > DT_NULL_IDX || maxNodes > (1 << DT_NODE_PARENT_BITS) - 1)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	m_nav = nav;
 | |
| 	
 | |
| 	if (!m_nodePool || m_nodePool->getMaxNodes() < maxNodes)
 | |
| 	{
 | |
| 		if (m_nodePool)
 | |
| 		{
 | |
| 			m_nodePool->~dtNodePool();
 | |
| 			dtFree(m_nodePool);
 | |
| 			m_nodePool = 0;
 | |
| 		}
 | |
| 		m_nodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(maxNodes, dtNextPow2(maxNodes/4));
 | |
| 		if (!m_nodePool)
 | |
| 			return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_nodePool->clear();
 | |
| 	}
 | |
| 	
 | |
| 	if (!m_tinyNodePool)
 | |
| 	{
 | |
| 		m_tinyNodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(64, 32);
 | |
| 		if (!m_tinyNodePool)
 | |
| 			return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_tinyNodePool->clear();
 | |
| 	}
 | |
| 	
 | |
| 	if (!m_openList || m_openList->getCapacity() < maxNodes)
 | |
| 	{
 | |
| 		if (m_openList)
 | |
| 		{
 | |
| 			m_openList->~dtNodeQueue();
 | |
| 			dtFree(m_openList);
 | |
| 			m_openList = 0;
 | |
| 		}
 | |
| 		m_openList = new (dtAlloc(sizeof(dtNodeQueue), DT_ALLOC_PERM)) dtNodeQueue(maxNodes);
 | |
| 		if (!m_openList)
 | |
| 			return DT_FAILURE | DT_OUT_OF_MEMORY;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_openList->clear();
 | |
| 	}
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*frand)(),
 | |
| 										 dtPolyRef* randomRef, float* randomPt) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 
 | |
| 	if (!filter || !frand || !randomRef || !randomPt)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	// Randomly pick one tile. Assume that all tiles cover roughly the same area.
 | |
| 	const dtMeshTile* tile = 0;
 | |
| 	float tsum = 0.0f;
 | |
| 	for (int i = 0; i < m_nav->getMaxTiles(); i++)
 | |
| 	{
 | |
| 		const dtMeshTile* t = m_nav->getTile(i);
 | |
| 		if (!t || !t->header) continue;
 | |
| 		
 | |
| 		// Choose random tile using reservoi sampling.
 | |
| 		const float area = 1.0f; // Could be tile area too.
 | |
| 		tsum += area;
 | |
| 		const float u = frand();
 | |
| 		if (u*tsum <= area)
 | |
| 			tile = t;
 | |
| 	}
 | |
| 	if (!tile)
 | |
| 		return DT_FAILURE;
 | |
| 
 | |
| 	// Randomly pick one polygon weighted by polygon area.
 | |
| 	const dtPoly* poly = 0;
 | |
| 	dtPolyRef polyRef = 0;
 | |
| 	const dtPolyRef base = m_nav->getPolyRefBase(tile);
 | |
| 
 | |
| 	float areaSum = 0.0f;
 | |
| 	for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 	{
 | |
| 		const dtPoly* p = &tile->polys[i];
 | |
| 		// Do not return off-mesh connection polygons.
 | |
| 		if (p->getType() != DT_POLYTYPE_GROUND)
 | |
| 			continue;
 | |
| 		// Must pass filter
 | |
| 		const dtPolyRef ref = base | (dtPolyRef)i;
 | |
| 		if (!filter->passFilter(ref, tile, p))
 | |
| 			continue;
 | |
| 
 | |
| 		// Calc area of the polygon.
 | |
| 		float polyArea = 0.0f;
 | |
| 		for (int j = 2; j < p->vertCount; ++j)
 | |
| 		{
 | |
| 			const float* va = &tile->verts[p->verts[0]*3];
 | |
| 			const float* vb = &tile->verts[p->verts[j-1]*3];
 | |
| 			const float* vc = &tile->verts[p->verts[j]*3];
 | |
| 			polyArea += dtTriArea2D(va,vb,vc);
 | |
| 		}
 | |
| 
 | |
| 		// Choose random polygon weighted by area, using reservoi sampling.
 | |
| 		areaSum += polyArea;
 | |
| 		const float u = frand();
 | |
| 		if (u*areaSum <= polyArea)
 | |
| 		{
 | |
| 			poly = p;
 | |
| 			polyRef = ref;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if (!poly)
 | |
| 		return DT_FAILURE;
 | |
| 
 | |
| 	// Randomly pick point on polygon.
 | |
| 	const float* v = &tile->verts[poly->verts[0]*3];
 | |
| 	float verts[3*DT_VERTS_PER_POLYGON];
 | |
| 	float areas[DT_VERTS_PER_POLYGON];
 | |
| 	dtVcopy(&verts[0*3],v);
 | |
| 	for (int j = 1; j < poly->vertCount; ++j)
 | |
| 	{
 | |
| 		v = &tile->verts[poly->verts[j]*3];
 | |
| 		dtVcopy(&verts[j*3],v);
 | |
| 	}
 | |
| 	
 | |
| 	const float s = frand();
 | |
| 	const float t = frand();
 | |
| 	
 | |
| 	float pt[3];
 | |
| 	dtRandomPointInConvexPoly(verts, poly->vertCount, areas, s, t, pt);
 | |
| 	
 | |
| 	float h = 0.0f;
 | |
| 	dtStatus status = getPolyHeight(polyRef, pt, &h);
 | |
| 	if (dtStatusFailed(status))
 | |
| 		return status;
 | |
| 	pt[1] = h;
 | |
| 	
 | |
| 	dtVcopy(randomPt, pt);
 | |
| 	*randomRef = polyRef;
 | |
| 
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius,
 | |
| 													 const dtQueryFilter* filter, float (*frand)(),
 | |
| 													 dtPolyRef* randomRef, float* randomPt) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_nodePool);
 | |
| 	dtAssert(m_openList);
 | |
| 	
 | |
| 	// Validate input
 | |
| 	if (!m_nav->isValidPolyRef(startRef) ||
 | |
| 		!centerPos || !dtVisfinite(centerPos) ||
 | |
| 		maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
 | |
| 		!filter || !frand || !randomRef || !randomPt)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	const dtMeshTile* startTile = 0;
 | |
| 	const dtPoly* startPoly = 0;
 | |
| 	m_nav->getTileAndPolyByRefUnsafe(startRef, &startTile, &startPoly);
 | |
| 	if (!filter->passFilter(startRef, startTile, startPoly))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	m_nodePool->clear();
 | |
| 	m_openList->clear();
 | |
| 	
 | |
| 	dtNode* startNode = m_nodePool->getNode(startRef);
 | |
| 	dtVcopy(startNode->pos, centerPos);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->cost = 0;
 | |
| 	startNode->total = 0;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_OPEN;
 | |
| 	m_openList->push(startNode);
 | |
| 	
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 	
 | |
| 	const float radiusSqr = dtSqr(maxRadius);
 | |
| 	float areaSum = 0.0f;
 | |
| 
 | |
| 	const dtMeshTile* randomTile = 0;
 | |
| 	const dtPoly* randomPoly = 0;
 | |
| 	dtPolyRef randomPolyRef = 0;
 | |
| 
 | |
| 	while (!m_openList->empty())
 | |
| 	{
 | |
| 		dtNode* bestNode = m_openList->pop();
 | |
| 		bestNode->flags &= ~DT_NODE_OPEN;
 | |
| 		bestNode->flags |= DT_NODE_CLOSED;
 | |
| 		
 | |
| 		// Get poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef bestRef = bestNode->id;
 | |
| 		const dtMeshTile* bestTile = 0;
 | |
| 		const dtPoly* bestPoly = 0;
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
 | |
| 
 | |
| 		// Place random locations on on ground.
 | |
| 		if (bestPoly->getType() == DT_POLYTYPE_GROUND)
 | |
| 		{
 | |
| 			// Calc area of the polygon.
 | |
| 			float polyArea = 0.0f;
 | |
| 			for (int j = 2; j < bestPoly->vertCount; ++j)
 | |
| 			{
 | |
| 				const float* va = &bestTile->verts[bestPoly->verts[0]*3];
 | |
| 				const float* vb = &bestTile->verts[bestPoly->verts[j-1]*3];
 | |
| 				const float* vc = &bestTile->verts[bestPoly->verts[j]*3];
 | |
| 				polyArea += dtTriArea2D(va,vb,vc);
 | |
| 			}
 | |
| 			// Choose random polygon weighted by area, using reservoi sampling.
 | |
| 			areaSum += polyArea;
 | |
| 			const float u = frand();
 | |
| 			if (u*areaSum <= polyArea)
 | |
| 			{
 | |
| 				randomTile = bestTile;
 | |
| 				randomPoly = bestPoly;
 | |
| 				randomPolyRef = bestRef;
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		
 | |
| 		// Get parent poly and tile.
 | |
| 		dtPolyRef parentRef = 0;
 | |
| 		const dtMeshTile* parentTile = 0;
 | |
| 		const dtPoly* parentPoly = 0;
 | |
| 		if (bestNode->pidx)
 | |
| 			parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
 | |
| 		if (parentRef)
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
 | |
| 		
 | |
| 		for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
 | |
| 		{
 | |
| 			const dtLink* link = &bestTile->links[i];
 | |
| 			dtPolyRef neighbourRef = link->ref;
 | |
| 			// Skip invalid neighbours and do not follow back to parent.
 | |
| 			if (!neighbourRef || neighbourRef == parentRef)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Expand to neighbour
 | |
| 			const dtMeshTile* neighbourTile = 0;
 | |
| 			const dtPoly* neighbourPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
 | |
| 			
 | |
| 			// Do not advance if the polygon is excluded by the filter.
 | |
| 			if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
 | |
| 				continue;
 | |
| 			
 | |
| 			// Find edge and calc distance to the edge.
 | |
| 			float va[3], vb[3];
 | |
| 			if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
 | |
| 				continue;
 | |
| 			
 | |
| 			// If the circle is not touching the next polygon, skip it.
 | |
| 			float tseg;
 | |
| 			float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
 | |
| 			if (distSqr > radiusSqr)
 | |
| 				continue;
 | |
| 			
 | |
| 			dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
 | |
| 			if (!neighbourNode)
 | |
| 			{
 | |
| 				status |= DT_OUT_OF_NODES;
 | |
| 				continue;
 | |
| 			}
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_CLOSED)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Cost
 | |
| 			if (neighbourNode->flags == 0)
 | |
| 				dtVlerp(neighbourNode->pos, va, vb, 0.5f);
 | |
| 			
 | |
| 			const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos);
 | |
| 			
 | |
| 			// The node is already in open list and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			
 | |
| 			neighbourNode->id = neighbourRef;
 | |
| 			neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
 | |
| 			neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
 | |
| 			neighbourNode->total = total;
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_OPEN)
 | |
| 			{
 | |
| 				m_openList->modify(neighbourNode);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				neighbourNode->flags = DT_NODE_OPEN;
 | |
| 				m_openList->push(neighbourNode);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if (!randomPoly)
 | |
| 		return DT_FAILURE;
 | |
| 	
 | |
| 	// Randomly pick point on polygon.
 | |
| 	const float* v = &randomTile->verts[randomPoly->verts[0]*3];
 | |
| 	float verts[3*DT_VERTS_PER_POLYGON];
 | |
| 	float areas[DT_VERTS_PER_POLYGON];
 | |
| 	dtVcopy(&verts[0*3],v);
 | |
| 	for (int j = 1; j < randomPoly->vertCount; ++j)
 | |
| 	{
 | |
| 		v = &randomTile->verts[randomPoly->verts[j]*3];
 | |
| 		dtVcopy(&verts[j*3],v);
 | |
| 	}
 | |
| 	
 | |
| 	const float s = frand();
 | |
| 	const float t = frand();
 | |
| 	
 | |
| 	float pt[3];
 | |
| 	dtRandomPointInConvexPoly(verts, randomPoly->vertCount, areas, s, t, pt);
 | |
| 	
 | |
| 	float h = 0.0f;
 | |
| 	dtStatus stat = getPolyHeight(randomPolyRef, pt, &h);
 | |
| 	if (dtStatusFailed(status))
 | |
| 		return stat;
 | |
| 	pt[1] = h;
 | |
| 	
 | |
| 	dtVcopy(randomPt, pt);
 | |
| 	*randomRef = randomPolyRef;
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// Uses the detail polygons to find the surface height. (Most accurate.)
 | |
| ///
 | |
| /// @p pos does not have to be within the bounds of the polygon or navigation mesh.
 | |
| ///
 | |
| /// See closestPointOnPolyBoundary() for a limited but faster option.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	if (!m_nav->isValidPolyRef(ref) ||
 | |
| 		!pos || !dtVisfinite(pos) ||
 | |
| 		!closest)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	m_nav->closestPointOnPoly(ref, pos, closest, posOverPoly);
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// Much faster than closestPointOnPoly().
 | |
| ///
 | |
| /// If the provided position lies within the polygon's xz-bounds (above or below), 
 | |
| /// then @p pos and @p closest will be equal.
 | |
| ///
 | |
| /// The height of @p closest will be the polygon boundary.  The height detail is not used.
 | |
| /// 
 | |
| /// @p pos does not have to be within the bounds of the polybon or the navigation mesh.
 | |
| /// 
 | |
| dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	
 | |
| 	const dtMeshTile* tile = 0;
 | |
| 	const dtPoly* poly = 0;
 | |
| 	if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	if (!pos || !dtVisfinite(pos) || !closest)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	// Collect vertices.
 | |
| 	float verts[DT_VERTS_PER_POLYGON*3];	
 | |
| 	float edged[DT_VERTS_PER_POLYGON];
 | |
| 	float edget[DT_VERTS_PER_POLYGON];
 | |
| 	int nv = 0;
 | |
| 	for (int i = 0; i < (int)poly->vertCount; ++i)
 | |
| 	{
 | |
| 		dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
 | |
| 		nv++;
 | |
| 	}		
 | |
| 	
 | |
| 	bool inside = dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget);
 | |
| 	if (inside)
 | |
| 	{
 | |
| 		// Point is inside the polygon, return the point.
 | |
| 		dtVcopy(closest, pos);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Point is outside the polygon, dtClamp to nearest edge.
 | |
| 		float dmin = edged[0];
 | |
| 		int imin = 0;
 | |
| 		for (int i = 1; i < nv; ++i)
 | |
| 		{
 | |
| 			if (edged[i] < dmin)
 | |
| 			{
 | |
| 				dmin = edged[i];
 | |
| 				imin = i;
 | |
| 			}
 | |
| 		}
 | |
| 		const float* va = &verts[imin*3];
 | |
| 		const float* vb = &verts[((imin+1)%nv)*3];
 | |
| 		dtVlerp(closest, va, vb, edget[imin]);
 | |
| 	}
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// Will return #DT_FAILURE | DT_INVALID_PARAM if the provided position is outside the xz-bounds 
 | |
| /// of the polygon.
 | |
| /// 
 | |
| dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 
 | |
| 	const dtMeshTile* tile = 0;
 | |
| 	const dtPoly* poly = 0;
 | |
| 	if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	if (!pos || !dtVisfinite2D(pos))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	// We used to return success for offmesh connections, but the
 | |
| 	// getPolyHeight in DetourNavMesh does not do this, so special
 | |
| 	// case it here.
 | |
| 	if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 	{
 | |
| 		const float* v0 = &tile->verts[poly->verts[0]*3];
 | |
| 		const float* v1 = &tile->verts[poly->verts[1]*3];
 | |
| 		float t;
 | |
| 		dtDistancePtSegSqr2D(pos, v0, v1, t);
 | |
| 		if (height)
 | |
| 			*height = v0[1] + (v1[1] - v0[1])*t;
 | |
| 
 | |
| 		return DT_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	return m_nav->getPolyHeight(tile, poly, pos, height)
 | |
| 		? DT_SUCCESS
 | |
| 		: DT_FAILURE | DT_INVALID_PARAM;
 | |
| }
 | |
| 
 | |
| class dtFindNearestPolyQuery : public dtPolyQuery
 | |
| {
 | |
| 	const dtNavMeshQuery* m_query;
 | |
| 	const float* m_center;
 | |
| 	float m_nearestDistanceSqr;
 | |
| 	dtPolyRef m_nearestRef;
 | |
| 	float m_nearestPoint[3];
 | |
| 	bool m_overPoly;
 | |
| 
 | |
| public:
 | |
| 	dtFindNearestPolyQuery(const dtNavMeshQuery* query, const float* center)
 | |
| 		: m_query(query), m_center(center), m_nearestDistanceSqr(FLT_MAX), m_nearestRef(0), m_nearestPoint(), m_overPoly(false)
 | |
| 	{
 | |
| 	}
 | |
| 
 | |
| 	dtPolyRef nearestRef() const { return m_nearestRef; }
 | |
| 	const float* nearestPoint() const { return m_nearestPoint; }
 | |
| 	bool isOverPoly() const { return m_overPoly; }
 | |
| 
 | |
| 	void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count)
 | |
| 	{
 | |
| 		dtIgnoreUnused(polys);
 | |
| 
 | |
| 		for (int i = 0; i < count; ++i)
 | |
| 		{
 | |
| 			dtPolyRef ref = refs[i];
 | |
| 			float closestPtPoly[3];
 | |
| 			float diff[3];
 | |
| 			bool posOverPoly = false;
 | |
| 			float d;
 | |
| 			m_query->closestPointOnPoly(ref, m_center, closestPtPoly, &posOverPoly);
 | |
| 
 | |
| 			// If a point is directly over a polygon and closer than
 | |
| 			// climb height, favor that instead of straight line nearest point.
 | |
| 			dtVsub(diff, m_center, closestPtPoly);
 | |
| 			if (posOverPoly)
 | |
| 			{
 | |
| 				d = dtAbs(diff[1]) - tile->header->walkableClimb;
 | |
| 				d = d > 0 ? d*d : 0;			
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				d = dtVlenSqr(diff);
 | |
| 			}
 | |
| 			
 | |
| 			if (d < m_nearestDistanceSqr)
 | |
| 			{
 | |
| 				dtVcopy(m_nearestPoint, closestPtPoly);
 | |
| 
 | |
| 				m_nearestDistanceSqr = d;
 | |
| 				m_nearestRef = ref;
 | |
| 				m_overPoly = posOverPoly;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /// @par 
 | |
| ///
 | |
| /// @note If the search box does not intersect any polygons the search will 
 | |
| /// return #DT_SUCCESS, but @p nearestRef will be zero. So if in doubt, check 
 | |
| /// @p nearestRef before using @p nearestPt.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents,
 | |
| 										 const dtQueryFilter* filter,
 | |
| 										 dtPolyRef* nearestRef, float* nearestPt) const
 | |
| {
 | |
| 	return findNearestPoly(center, halfExtents, filter, nearestRef, nearestPt, NULL);
 | |
| }
 | |
| 
 | |
| // If center and nearestPt point to an equal position, isOverPoly will be true;
 | |
| // however there's also a special case of climb height inside the polygon (see dtFindNearestPolyQuery)
 | |
| dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents,
 | |
| 										 const dtQueryFilter* filter,
 | |
| 										 dtPolyRef* nearestRef, float* nearestPt, bool* isOverPoly) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 
 | |
| 	if (!nearestRef)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	// queryPolygons below will check rest of params
 | |
| 	
 | |
| 	dtFindNearestPolyQuery query(this, center);
 | |
| 
 | |
| 	dtStatus status = queryPolygons(center, halfExtents, filter, &query);
 | |
| 	if (dtStatusFailed(status))
 | |
| 		return status;
 | |
| 
 | |
| 	*nearestRef = query.nearestRef();
 | |
| 	// Only override nearestPt if we actually found a poly so the nearest point
 | |
| 	// is valid.
 | |
| 	if (nearestPt && *nearestRef)
 | |
| 	{
 | |
| 		dtVcopy(nearestPt, query.nearestPoint());
 | |
| 		if (isOverPoly)
 | |
| 			*isOverPoly = query.isOverPoly();
 | |
| 	}
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| void dtNavMeshQuery::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
 | |
| 										 const dtQueryFilter* filter, dtPolyQuery* query) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	static const int batchSize = 32;
 | |
| 	dtPolyRef polyRefs[batchSize];
 | |
| 	dtPoly* polys[batchSize];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	if (tile->bvTree)
 | |
| 	{
 | |
| 		const dtBVNode* node = &tile->bvTree[0];
 | |
| 		const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
 | |
| 		const float* tbmin = tile->header->bmin;
 | |
| 		const float* tbmax = tile->header->bmax;
 | |
| 		const float qfac = tile->header->bvQuantFactor;
 | |
| 
 | |
| 		// Calculate quantized box
 | |
| 		unsigned short bmin[3], bmax[3];
 | |
| 		// dtClamp query box to world box.
 | |
| 		float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
 | |
| 		float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
 | |
| 		float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
 | |
| 		float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
 | |
| 		float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
 | |
| 		float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
 | |
| 		// Quantize
 | |
| 		bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
 | |
| 		bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
 | |
| 		bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
 | |
| 		bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
 | |
| 		bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
 | |
| 		bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
 | |
| 
 | |
| 		// Traverse tree
 | |
| 		const dtPolyRef base = m_nav->getPolyRefBase(tile);
 | |
| 		while (node < end)
 | |
| 		{
 | |
| 			const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
 | |
| 			const bool isLeafNode = node->i >= 0;
 | |
| 
 | |
| 			if (isLeafNode && overlap)
 | |
| 			{
 | |
| 				dtPolyRef ref = base | (dtPolyRef)node->i;
 | |
| 				if (filter->passFilter(ref, tile, &tile->polys[node->i]))
 | |
| 				{
 | |
| 					polyRefs[n] = ref;
 | |
| 					polys[n] = &tile->polys[node->i];
 | |
| 
 | |
| 					if (n == batchSize - 1)
 | |
| 					{
 | |
| 						query->process(tile, polys, polyRefs, batchSize);
 | |
| 						n = 0;
 | |
| 					}
 | |
| 					else
 | |
| 					{
 | |
| 						n++;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (overlap || isLeafNode)
 | |
| 				node++;
 | |
| 			else
 | |
| 			{
 | |
| 				const int escapeIndex = -node->i;
 | |
| 				node += escapeIndex;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		float bmin[3], bmax[3];
 | |
| 		const dtPolyRef base = m_nav->getPolyRefBase(tile);
 | |
| 		for (int i = 0; i < tile->header->polyCount; ++i)
 | |
| 		{
 | |
| 			dtPoly* p = &tile->polys[i];
 | |
| 			// Do not return off-mesh connection polygons.
 | |
| 			if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 				continue;
 | |
| 			// Must pass filter
 | |
| 			const dtPolyRef ref = base | (dtPolyRef)i;
 | |
| 			if (!filter->passFilter(ref, tile, p))
 | |
| 				continue;
 | |
| 			// Calc polygon bounds.
 | |
| 			const float* v = &tile->verts[p->verts[0]*3];
 | |
| 			dtVcopy(bmin, v);
 | |
| 			dtVcopy(bmax, v);
 | |
| 			for (int j = 1; j < p->vertCount; ++j)
 | |
| 			{
 | |
| 				v = &tile->verts[p->verts[j]*3];
 | |
| 				dtVmin(bmin, v);
 | |
| 				dtVmax(bmax, v);
 | |
| 			}
 | |
| 			if (dtOverlapBounds(qmin, qmax, bmin, bmax))
 | |
| 			{
 | |
| 				polyRefs[n] = ref;
 | |
| 				polys[n] = p;
 | |
| 
 | |
| 				if (n == batchSize - 1)
 | |
| 				{
 | |
| 					query->process(tile, polys, polyRefs, batchSize);
 | |
| 					n = 0;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					n++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Process the last polygons that didn't make a full batch.
 | |
| 	if (n > 0)
 | |
| 		query->process(tile, polys, polyRefs, n);
 | |
| }
 | |
| 
 | |
| class dtCollectPolysQuery : public dtPolyQuery
 | |
| {
 | |
| 	dtPolyRef* m_polys;
 | |
| 	const int m_maxPolys;
 | |
| 	int m_numCollected;
 | |
| 	bool m_overflow;
 | |
| 
 | |
| public:
 | |
| 	dtCollectPolysQuery(dtPolyRef* polys, const int maxPolys)
 | |
| 		: m_polys(polys), m_maxPolys(maxPolys), m_numCollected(0), m_overflow(false)
 | |
| 	{
 | |
| 	}
 | |
| 
 | |
| 	int numCollected() const { return m_numCollected; }
 | |
| 	bool overflowed() const { return m_overflow; }
 | |
| 
 | |
| 	void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count)
 | |
| 	{
 | |
| 		dtIgnoreUnused(tile);
 | |
| 		dtIgnoreUnused(polys);
 | |
| 
 | |
| 		int numLeft = m_maxPolys - m_numCollected;
 | |
| 		int toCopy = count;
 | |
| 		if (toCopy > numLeft)
 | |
| 		{
 | |
| 			m_overflow = true;
 | |
| 			toCopy = numLeft;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(m_polys + m_numCollected, refs, (size_t)toCopy * sizeof(dtPolyRef));
 | |
| 		m_numCollected += toCopy;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /// @par 
 | |
| ///
 | |
| /// If no polygons are found, the function will return #DT_SUCCESS with a
 | |
| /// @p polyCount of zero.
 | |
| ///
 | |
| /// If @p polys is too small to hold the entire result set, then the array will 
 | |
| /// be filled to capacity. The method of choosing which polygons from the 
 | |
| /// full set are included in the partial result set is undefined.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents,
 | |
| 									   const dtQueryFilter* filter,
 | |
| 									   dtPolyRef* polys, int* polyCount, const int maxPolys) const
 | |
| {
 | |
| 	if (!polys || !polyCount || maxPolys < 0)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	dtCollectPolysQuery collector(polys, maxPolys);
 | |
| 
 | |
| 	dtStatus status = queryPolygons(center, halfExtents, filter, &collector);
 | |
| 	if (dtStatusFailed(status))
 | |
| 		return status;
 | |
| 
 | |
| 	*polyCount = collector.numCollected();
 | |
| 	return collector.overflowed() ? DT_SUCCESS | DT_BUFFER_TOO_SMALL : DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /// @par 
 | |
| ///
 | |
| /// The query will be invoked with batches of polygons. Polygons passed
 | |
| /// to the query have bounding boxes that overlap with the center and halfExtents
 | |
| /// passed to this function. The dtPolyQuery::process function is invoked multiple
 | |
| /// times until all overlapping polygons have been processed.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents,
 | |
| 									   const dtQueryFilter* filter, dtPolyQuery* query) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 
 | |
| 	if (!center || !dtVisfinite(center) ||
 | |
| 		!halfExtents || !dtVisfinite(halfExtents) ||
 | |
| 		!filter || !query)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	float bmin[3], bmax[3];
 | |
| 	dtVsub(bmin, center, halfExtents);
 | |
| 	dtVadd(bmax, center, halfExtents);
 | |
| 	
 | |
| 	// Find tiles the query touches.
 | |
| 	int minx, miny, maxx, maxy;
 | |
| 	m_nav->calcTileLoc(bmin, &minx, &miny);
 | |
| 	m_nav->calcTileLoc(bmax, &maxx, &maxy);
 | |
| 
 | |
| 	static const int MAX_NEIS = 32;
 | |
| 	const dtMeshTile* neis[MAX_NEIS];
 | |
| 	
 | |
| 	for (int y = miny; y <= maxy; ++y)
 | |
| 	{
 | |
| 		for (int x = minx; x <= maxx; ++x)
 | |
| 		{
 | |
| 			const int nneis = m_nav->getTilesAt(x,y,neis,MAX_NEIS);
 | |
| 			for (int j = 0; j < nneis; ++j)
 | |
| 			{
 | |
| 				queryPolygonsInTile(neis[j], bmin, bmax, filter, query);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// If the end polygon cannot be reached through the navigation graph,
 | |
| /// the last polygon in the path will be the nearest the end polygon.
 | |
| ///
 | |
| /// If the path array is to small to hold the full result, it will be filled as 
 | |
| /// far as possible from the start polygon toward the end polygon.
 | |
| ///
 | |
| /// The start and end positions are used to calculate traversal costs. 
 | |
| /// (The y-values impact the result.)
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef,
 | |
| 								  const float* startPos, const float* endPos,
 | |
| 								  const dtQueryFilter* filter,
 | |
| 								  dtPolyRef* path, int* pathCount, const int maxPath) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_nodePool);
 | |
| 	dtAssert(m_openList);
 | |
| 
 | |
| 	if (!pathCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*pathCount = 0;
 | |
| 	
 | |
| 	// Validate input
 | |
| 	if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
 | |
| 		!startPos || !dtVisfinite(startPos) ||
 | |
| 		!endPos || !dtVisfinite(endPos) ||
 | |
| 		!filter || !path || maxPath <= 0)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	if (startRef == endRef)
 | |
| 	{
 | |
| 		path[0] = startRef;
 | |
| 		*pathCount = 1;
 | |
| 		return DT_SUCCESS;
 | |
| 	}
 | |
| 	
 | |
| 	m_nodePool->clear();
 | |
| 	m_openList->clear();
 | |
| 	
 | |
| 	dtNode* startNode = m_nodePool->getNode(startRef);
 | |
| 	dtVcopy(startNode->pos, startPos);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->cost = 0;
 | |
| 	startNode->total = dtVdist(startPos, endPos) * H_SCALE;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_OPEN;
 | |
| 	m_openList->push(startNode);
 | |
| 	
 | |
| 	dtNode* lastBestNode = startNode;
 | |
| 	float lastBestNodeCost = startNode->total;
 | |
| 	
 | |
| 	bool outOfNodes = false;
 | |
| 	
 | |
| 	while (!m_openList->empty())
 | |
| 	{
 | |
| 		// Remove node from open list and put it in closed list.
 | |
| 		dtNode* bestNode = m_openList->pop();
 | |
| 		bestNode->flags &= ~DT_NODE_OPEN;
 | |
| 		bestNode->flags |= DT_NODE_CLOSED;
 | |
| 		
 | |
| 		// Reached the goal, stop searching.
 | |
| 		if (bestNode->id == endRef)
 | |
| 		{
 | |
| 			lastBestNode = bestNode;
 | |
| 			break;
 | |
| 		}
 | |
| 		
 | |
| 		// Get current poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef bestRef = bestNode->id;
 | |
| 		const dtMeshTile* bestTile = 0;
 | |
| 		const dtPoly* bestPoly = 0;
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
 | |
| 		
 | |
| 		// Get parent poly and tile.
 | |
| 		dtPolyRef parentRef = 0;
 | |
| 		const dtMeshTile* parentTile = 0;
 | |
| 		const dtPoly* parentPoly = 0;
 | |
| 		if (bestNode->pidx)
 | |
| 			parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
 | |
| 		if (parentRef)
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
 | |
| 		
 | |
| 		for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
 | |
| 		{
 | |
| 			dtPolyRef neighbourRef = bestTile->links[i].ref;
 | |
| 			
 | |
| 			// Skip invalid ids and do not expand back to where we came from.
 | |
| 			if (!neighbourRef || neighbourRef == parentRef)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Get neighbour poly and tile.
 | |
| 			// The API input has been cheked already, skip checking internal data.
 | |
| 			const dtMeshTile* neighbourTile = 0;
 | |
| 			const dtPoly* neighbourPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);			
 | |
| 			
 | |
| 			if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
 | |
| 				continue;
 | |
| 
 | |
| 			// deal explicitly with crossing tile boundaries
 | |
| 			unsigned char crossSide = 0;
 | |
| 			if (bestTile->links[i].side != 0xff)
 | |
| 				crossSide = bestTile->links[i].side >> 1;
 | |
| 
 | |
| 			// get the node
 | |
| 			dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, crossSide);
 | |
| 			if (!neighbourNode)
 | |
| 			{
 | |
| 				outOfNodes = true;
 | |
| 				continue;
 | |
| 			}
 | |
| 			
 | |
| 			// If the node is visited the first time, calculate node position.
 | |
| 			if (neighbourNode->flags == 0)
 | |
| 			{
 | |
| 				getEdgeMidPoint(bestRef, bestPoly, bestTile,
 | |
| 								neighbourRef, neighbourPoly, neighbourTile,
 | |
| 								neighbourNode->pos);
 | |
| 			}
 | |
| 
 | |
| 			// Calculate cost and heuristic.
 | |
| 			float cost = 0;
 | |
| 			float heuristic = 0;
 | |
| 			
 | |
| 			// Special case for last node.
 | |
| 			if (neighbourRef == endRef)
 | |
| 			{
 | |
| 				// Cost
 | |
| 				const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos,
 | |
| 													  parentRef, parentTile, parentPoly,
 | |
| 													  bestRef, bestTile, bestPoly,
 | |
| 													  neighbourRef, neighbourTile, neighbourPoly);
 | |
| 				const float endCost = filter->getCost(neighbourNode->pos, endPos,
 | |
| 													  bestRef, bestTile, bestPoly,
 | |
| 													  neighbourRef, neighbourTile, neighbourPoly,
 | |
| 													  0, 0, 0);
 | |
| 				
 | |
| 				cost = bestNode->cost + curCost + endCost;
 | |
| 				heuristic = 0;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Cost
 | |
| 				const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos,
 | |
| 													  parentRef, parentTile, parentPoly,
 | |
| 													  bestRef, bestTile, bestPoly,
 | |
| 													  neighbourRef, neighbourTile, neighbourPoly);
 | |
| 				cost = bestNode->cost + curCost;
 | |
| 				heuristic = dtVdist(neighbourNode->pos, endPos)*H_SCALE;
 | |
| 			}
 | |
| 
 | |
| 			const float total = cost + heuristic;
 | |
| 			
 | |
| 			// The node is already in open list and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			// The node is already visited and process, and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Add or update the node.
 | |
| 			neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
 | |
| 			neighbourNode->id = neighbourRef;
 | |
| 			neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
 | |
| 			neighbourNode->cost = cost;
 | |
| 			neighbourNode->total = total;
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_OPEN)
 | |
| 			{
 | |
| 				// Already in open, update node location.
 | |
| 				m_openList->modify(neighbourNode);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Put the node in open list.
 | |
| 				neighbourNode->flags |= DT_NODE_OPEN;
 | |
| 				m_openList->push(neighbourNode);
 | |
| 			}
 | |
| 			
 | |
| 			// Update nearest node to target so far.
 | |
| 			if (heuristic < lastBestNodeCost)
 | |
| 			{
 | |
| 				lastBestNodeCost = heuristic;
 | |
| 				lastBestNode = neighbourNode;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dtStatus status = getPathToNode(lastBestNode, path, pathCount, maxPath);
 | |
| 
 | |
| 	if (lastBestNode->id != endRef)
 | |
| 		status |= DT_PARTIAL_RESULT;
 | |
| 
 | |
| 	if (outOfNodes)
 | |
| 		status |= DT_OUT_OF_NODES;
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::getPathToNode(dtNode* endNode, dtPolyRef* path, int* pathCount, int maxPath) const
 | |
| {
 | |
| 	// Find the length of the entire path.
 | |
| 	dtNode* curNode = endNode;
 | |
| 	int length = 0;
 | |
| 	do
 | |
| 	{
 | |
| 		length++;
 | |
| 		curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
 | |
| 	} while (curNode);
 | |
| 
 | |
| 	// If the path cannot be fully stored then advance to the last node we will be able to store.
 | |
| 	curNode = endNode;
 | |
| 	int writeCount;
 | |
| 	for (writeCount = length; writeCount > maxPath; writeCount--)
 | |
| 	{
 | |
| 		dtAssert(curNode);
 | |
| 
 | |
| 		curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
 | |
| 	}
 | |
| 
 | |
| 	// Write path
 | |
| 	for (int i = writeCount - 1; i >= 0; i--)
 | |
| 	{
 | |
| 		dtAssert(curNode);
 | |
| 
 | |
| 		path[i] = curNode->id;
 | |
| 		curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
 | |
| 	}
 | |
| 
 | |
| 	dtAssert(!curNode);
 | |
| 
 | |
| 	*pathCount = dtMin(length, maxPath);
 | |
| 
 | |
| 	if (length > maxPath)
 | |
| 		return DT_SUCCESS | DT_BUFFER_TOO_SMALL;
 | |
| 
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// @warning Calling any non-slice methods before calling finalizeSlicedFindPath() 
 | |
| /// or finalizeSlicedFindPathPartial() may result in corrupted data!
 | |
| ///
 | |
| /// The @p filter pointer is stored and used for the duration of the sliced
 | |
| /// path query.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef,
 | |
| 											const float* startPos, const float* endPos,
 | |
| 											const dtQueryFilter* filter, const unsigned int options)
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_nodePool);
 | |
| 	dtAssert(m_openList);
 | |
| 
 | |
| 	// Init path state.
 | |
| 	memset(&m_query, 0, sizeof(dtQueryData));
 | |
| 	m_query.status = DT_FAILURE;
 | |
| 	m_query.startRef = startRef;
 | |
| 	m_query.endRef = endRef;
 | |
| 	if (startPos)
 | |
| 		dtVcopy(m_query.startPos, startPos);
 | |
| 	if (endPos)
 | |
| 		dtVcopy(m_query.endPos, endPos);
 | |
| 	m_query.filter = filter;
 | |
| 	m_query.options = options;
 | |
| 	m_query.raycastLimitSqr = FLT_MAX;
 | |
| 	
 | |
| 	// Validate input
 | |
| 	if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
 | |
| 		!startPos || !dtVisfinite(startPos) ||
 | |
| 		!endPos || !dtVisfinite(endPos) || !filter)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	// trade quality with performance?
 | |
| 	if (options & DT_FINDPATH_ANY_ANGLE)
 | |
| 	{
 | |
| 		// limiting to several times the character radius yields nice results. It is not sensitive 
 | |
| 		// so it is enough to compute it from the first tile.
 | |
| 		const dtMeshTile* tile = m_nav->getTileByRef(startRef);
 | |
| 		float agentRadius = tile->header->walkableRadius;
 | |
| 		m_query.raycastLimitSqr = dtSqr(agentRadius * DT_RAY_CAST_LIMIT_PROPORTIONS);
 | |
| 	}
 | |
| 
 | |
| 	if (startRef == endRef)
 | |
| 	{
 | |
| 		m_query.status = DT_SUCCESS;
 | |
| 		return DT_SUCCESS;
 | |
| 	}
 | |
| 	
 | |
| 	m_nodePool->clear();
 | |
| 	m_openList->clear();
 | |
| 	
 | |
| 	dtNode* startNode = m_nodePool->getNode(startRef);
 | |
| 	dtVcopy(startNode->pos, startPos);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->cost = 0;
 | |
| 	startNode->total = dtVdist(startPos, endPos) * H_SCALE;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_OPEN;
 | |
| 	m_openList->push(startNode);
 | |
| 	
 | |
| 	m_query.status = DT_IN_PROGRESS;
 | |
| 	m_query.lastBestNode = startNode;
 | |
| 	m_query.lastBestNodeCost = startNode->total;
 | |
| 	
 | |
| 	return m_query.status;
 | |
| }
 | |
| 	
 | |
| dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters)
 | |
| {
 | |
| 	if (!dtStatusInProgress(m_query.status))
 | |
| 		return m_query.status;
 | |
| 
 | |
| 	// Make sure the request is still valid.
 | |
| 	if (!m_nav->isValidPolyRef(m_query.startRef) || !m_nav->isValidPolyRef(m_query.endRef))
 | |
| 	{
 | |
| 		m_query.status = DT_FAILURE;
 | |
| 		return DT_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	dtRaycastHit rayHit;
 | |
| 	rayHit.maxPath = 0;
 | |
| 		
 | |
| 	int iter = 0;
 | |
| 	while (iter < maxIter && !m_openList->empty())
 | |
| 	{
 | |
| 		iter++;
 | |
| 		
 | |
| 		// Remove node from open list and put it in closed list.
 | |
| 		dtNode* bestNode = m_openList->pop();
 | |
| 		bestNode->flags &= ~DT_NODE_OPEN;
 | |
| 		bestNode->flags |= DT_NODE_CLOSED;
 | |
| 		
 | |
| 		// Reached the goal, stop searching.
 | |
| 		if (bestNode->id == m_query.endRef)
 | |
| 		{
 | |
| 			m_query.lastBestNode = bestNode;
 | |
| 			const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
 | |
| 			m_query.status = DT_SUCCESS | details;
 | |
| 			if (doneIters)
 | |
| 				*doneIters = iter;
 | |
| 			return m_query.status;
 | |
| 		}
 | |
| 		
 | |
| 		// Get current poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef bestRef = bestNode->id;
 | |
| 		const dtMeshTile* bestTile = 0;
 | |
| 		const dtPoly* bestPoly = 0;
 | |
| 		if (dtStatusFailed(m_nav->getTileAndPolyByRef(bestRef, &bestTile, &bestPoly)))
 | |
| 		{
 | |
| 			// The polygon has disappeared during the sliced query, fail.
 | |
| 			m_query.status = DT_FAILURE;
 | |
| 			if (doneIters)
 | |
| 				*doneIters = iter;
 | |
| 			return m_query.status;
 | |
| 		}
 | |
| 		
 | |
| 		// Get parent and grand parent poly and tile.
 | |
| 		dtPolyRef parentRef = 0, grandpaRef = 0;
 | |
| 		const dtMeshTile* parentTile = 0;
 | |
| 		const dtPoly* parentPoly = 0;
 | |
| 		dtNode* parentNode = 0;
 | |
| 		if (bestNode->pidx)
 | |
| 		{
 | |
| 			parentNode = m_nodePool->getNodeAtIdx(bestNode->pidx);
 | |
| 			parentRef = parentNode->id;
 | |
| 			if (parentNode->pidx)
 | |
| 				grandpaRef = m_nodePool->getNodeAtIdx(parentNode->pidx)->id;
 | |
| 		}
 | |
| 		if (parentRef)
 | |
| 		{
 | |
| 			bool invalidParent = dtStatusFailed(m_nav->getTileAndPolyByRef(parentRef, &parentTile, &parentPoly));
 | |
| 			if (invalidParent || (grandpaRef && !m_nav->isValidPolyRef(grandpaRef)) )
 | |
| 			{
 | |
| 				// The polygon has disappeared during the sliced query, fail.
 | |
| 				m_query.status = DT_FAILURE;
 | |
| 				if (doneIters)
 | |
| 					*doneIters = iter;
 | |
| 				return m_query.status;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// decide whether to test raycast to previous nodes
 | |
| 		bool tryLOS = false;
 | |
| 		if (m_query.options & DT_FINDPATH_ANY_ANGLE)
 | |
| 		{
 | |
| 			if ((parentRef != 0) && (dtVdistSqr(parentNode->pos, bestNode->pos) < m_query.raycastLimitSqr))
 | |
| 				tryLOS = true;
 | |
| 		}
 | |
| 		
 | |
| 		for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
 | |
| 		{
 | |
| 			dtPolyRef neighbourRef = bestTile->links[i].ref;
 | |
| 			
 | |
| 			// Skip invalid ids and do not expand back to where we came from.
 | |
| 			if (!neighbourRef || neighbourRef == parentRef)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Get neighbour poly and tile.
 | |
| 			// The API input has been cheked already, skip checking internal data.
 | |
| 			const dtMeshTile* neighbourTile = 0;
 | |
| 			const dtPoly* neighbourPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);			
 | |
| 			
 | |
| 			if (!m_query.filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
 | |
| 				continue;
 | |
| 			
 | |
| 			// get the neighbor node
 | |
| 			dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, 0);
 | |
| 			if (!neighbourNode)
 | |
| 			{
 | |
| 				m_query.status |= DT_OUT_OF_NODES;
 | |
| 				continue;
 | |
| 			}
 | |
| 			
 | |
| 			// do not expand to nodes that were already visited from the same parent
 | |
| 			if (neighbourNode->pidx != 0 && neighbourNode->pidx == bestNode->pidx)
 | |
| 				continue;
 | |
| 
 | |
| 			// If the node is visited the first time, calculate node position.
 | |
| 			if (neighbourNode->flags == 0)
 | |
| 			{
 | |
| 				getEdgeMidPoint(bestRef, bestPoly, bestTile,
 | |
| 								neighbourRef, neighbourPoly, neighbourTile,
 | |
| 								neighbourNode->pos);
 | |
| 			}
 | |
| 			
 | |
| 			// Calculate cost and heuristic.
 | |
| 			float cost = 0;
 | |
| 			float heuristic = 0;
 | |
| 			
 | |
| 			// raycast parent
 | |
| 			bool foundShortCut = false;
 | |
| 			rayHit.pathCost = rayHit.t = 0;
 | |
| 			if (tryLOS)
 | |
| 			{
 | |
| 				raycast(parentRef, parentNode->pos, neighbourNode->pos, m_query.filter, DT_RAYCAST_USE_COSTS, &rayHit, grandpaRef);
 | |
| 				foundShortCut = rayHit.t >= 1.0f;
 | |
| 			}
 | |
| 
 | |
| 			// update move cost
 | |
| 			if (foundShortCut)
 | |
| 			{
 | |
| 				// shortcut found using raycast. Using shorter cost instead
 | |
| 				cost = parentNode->cost + rayHit.pathCost;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// No shortcut found.
 | |
| 				const float curCost = m_query.filter->getCost(bestNode->pos, neighbourNode->pos,
 | |
| 															  parentRef, parentTile, parentPoly,
 | |
| 															bestRef, bestTile, bestPoly,
 | |
| 															neighbourRef, neighbourTile, neighbourPoly);
 | |
| 				cost = bestNode->cost + curCost;
 | |
| 			}
 | |
| 
 | |
| 			// Special case for last node.
 | |
| 			if (neighbourRef == m_query.endRef)
 | |
| 			{
 | |
| 				const float endCost = m_query.filter->getCost(neighbourNode->pos, m_query.endPos,
 | |
| 															  bestRef, bestTile, bestPoly,
 | |
| 															  neighbourRef, neighbourTile, neighbourPoly,
 | |
| 															  0, 0, 0);
 | |
| 				
 | |
| 				cost = cost + endCost;
 | |
| 				heuristic = 0;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				heuristic = dtVdist(neighbourNode->pos, m_query.endPos)*H_SCALE;
 | |
| 			}
 | |
| 			
 | |
| 			const float total = cost + heuristic;
 | |
| 			
 | |
| 			// The node is already in open list and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			// The node is already visited and process, and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Add or update the node.
 | |
| 			neighbourNode->pidx = foundShortCut ? bestNode->pidx : m_nodePool->getNodeIdx(bestNode);
 | |
| 			neighbourNode->id = neighbourRef;
 | |
| 			neighbourNode->flags = (neighbourNode->flags & ~(DT_NODE_CLOSED | DT_NODE_PARENT_DETACHED));
 | |
| 			neighbourNode->cost = cost;
 | |
| 			neighbourNode->total = total;
 | |
| 			if (foundShortCut)
 | |
| 				neighbourNode->flags = (neighbourNode->flags | DT_NODE_PARENT_DETACHED);
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_OPEN)
 | |
| 			{
 | |
| 				// Already in open, update node location.
 | |
| 				m_openList->modify(neighbourNode);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// Put the node in open list.
 | |
| 				neighbourNode->flags |= DT_NODE_OPEN;
 | |
| 				m_openList->push(neighbourNode);
 | |
| 			}
 | |
| 			
 | |
| 			// Update nearest node to target so far.
 | |
| 			if (heuristic < m_query.lastBestNodeCost)
 | |
| 			{
 | |
| 				m_query.lastBestNodeCost = heuristic;
 | |
| 				m_query.lastBestNode = neighbourNode;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Exhausted all nodes, but could not find path.
 | |
| 	if (m_openList->empty())
 | |
| 	{
 | |
| 		const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
 | |
| 		m_query.status = DT_SUCCESS | details;
 | |
| 	}
 | |
| 
 | |
| 	if (doneIters)
 | |
| 		*doneIters = iter;
 | |
| 
 | |
| 	return m_query.status;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath)
 | |
| {
 | |
| 	if (!pathCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*pathCount = 0;
 | |
| 
 | |
| 	if (!path || maxPath <= 0)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	if (dtStatusFailed(m_query.status))
 | |
| 	{
 | |
| 		// Reset query.
 | |
| 		memset(&m_query, 0, sizeof(dtQueryData));
 | |
| 		return DT_FAILURE;
 | |
| 	}
 | |
| 
 | |
| 	int n = 0;
 | |
| 
 | |
| 	if (m_query.startRef == m_query.endRef)
 | |
| 	{
 | |
| 		// Special case: the search starts and ends at same poly.
 | |
| 		path[n++] = m_query.startRef;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Reverse the path.
 | |
| 		dtAssert(m_query.lastBestNode);
 | |
| 		
 | |
| 		if (m_query.lastBestNode->id != m_query.endRef)
 | |
| 			m_query.status |= DT_PARTIAL_RESULT;
 | |
| 		
 | |
| 		dtNode* prev = 0;
 | |
| 		dtNode* node = m_query.lastBestNode;
 | |
| 		int prevRay = 0;
 | |
| 		do
 | |
| 		{
 | |
| 			dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
 | |
| 			node->pidx = m_nodePool->getNodeIdx(prev);
 | |
| 			prev = node;
 | |
| 			int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut)
 | |
| 			node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node
 | |
| 			prevRay = nextRay;
 | |
| 			node = next;
 | |
| 		}
 | |
| 		while (node);
 | |
| 		
 | |
| 		// Store path
 | |
| 		node = prev;
 | |
| 		do
 | |
| 		{
 | |
| 			dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
 | |
| 			dtStatus status = 0;
 | |
| 			if (node->flags & DT_NODE_PARENT_DETACHED)
 | |
| 			{
 | |
| 				float t, normal[3];
 | |
| 				int m;
 | |
| 				status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n);
 | |
| 				n += m;
 | |
| 				// raycast ends on poly boundary and the path might include the next poly boundary.
 | |
| 				if (path[n-1] == next->id)
 | |
| 					n--; // remove to avoid duplicates
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				path[n++] = node->id;
 | |
| 				if (n >= maxPath)
 | |
| 					status = DT_BUFFER_TOO_SMALL;
 | |
| 			}
 | |
| 
 | |
| 			if (status & DT_STATUS_DETAIL_MASK)
 | |
| 			{
 | |
| 				m_query.status |= status & DT_STATUS_DETAIL_MASK;
 | |
| 				break;
 | |
| 			}
 | |
| 			node = next;
 | |
| 		}
 | |
| 		while (node);
 | |
| 	}
 | |
| 	
 | |
| 	const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
 | |
| 
 | |
| 	// Reset query.
 | |
| 	memset(&m_query, 0, sizeof(dtQueryData));
 | |
| 	
 | |
| 	*pathCount = n;
 | |
| 	
 | |
| 	return DT_SUCCESS | details;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
 | |
| 													   dtPolyRef* path, int* pathCount, const int maxPath)
 | |
| {
 | |
| 	if (!pathCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*pathCount = 0;
 | |
| 
 | |
| 	if (!existing || existingSize <= 0 || !path || !pathCount || maxPath <= 0)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	if (dtStatusFailed(m_query.status))
 | |
| 	{
 | |
| 		// Reset query.
 | |
| 		memset(&m_query, 0, sizeof(dtQueryData));
 | |
| 		return DT_FAILURE;
 | |
| 	}
 | |
| 	
 | |
| 	int n = 0;
 | |
| 	
 | |
| 	if (m_query.startRef == m_query.endRef)
 | |
| 	{
 | |
| 		// Special case: the search starts and ends at same poly.
 | |
| 		path[n++] = m_query.startRef;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Find furthest existing node that was visited.
 | |
| 		dtNode* prev = 0;
 | |
| 		dtNode* node = 0;
 | |
| 		for (int i = existingSize-1; i >= 0; --i)
 | |
| 		{
 | |
| 			m_nodePool->findNodes(existing[i], &node, 1);
 | |
| 			if (node)
 | |
| 				break;
 | |
| 		}
 | |
| 		
 | |
| 		if (!node)
 | |
| 		{
 | |
| 			m_query.status |= DT_PARTIAL_RESULT;
 | |
| 			dtAssert(m_query.lastBestNode);
 | |
| 			node = m_query.lastBestNode;
 | |
| 		}
 | |
| 		
 | |
| 		// Reverse the path.
 | |
| 		int prevRay = 0;
 | |
| 		do
 | |
| 		{
 | |
| 			dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
 | |
| 			node->pidx = m_nodePool->getNodeIdx(prev);
 | |
| 			prev = node;
 | |
| 			int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut)
 | |
| 			node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node
 | |
| 			prevRay = nextRay;
 | |
| 			node = next;
 | |
| 		}
 | |
| 		while (node);
 | |
| 		
 | |
| 		// Store path
 | |
| 		node = prev;
 | |
| 		do
 | |
| 		{
 | |
| 			dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
 | |
| 			dtStatus status = 0;
 | |
| 			if (node->flags & DT_NODE_PARENT_DETACHED)
 | |
| 			{
 | |
| 				float t, normal[3];
 | |
| 				int m;
 | |
| 				status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n);
 | |
| 				n += m;
 | |
| 				// raycast ends on poly boundary and the path might include the next poly boundary.
 | |
| 				if (path[n-1] == next->id)
 | |
| 					n--; // remove to avoid duplicates
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				path[n++] = node->id;
 | |
| 				if (n >= maxPath)
 | |
| 					status = DT_BUFFER_TOO_SMALL;
 | |
| 			}
 | |
| 
 | |
| 			if (status & DT_STATUS_DETAIL_MASK)
 | |
| 			{
 | |
| 				m_query.status |= status & DT_STATUS_DETAIL_MASK;
 | |
| 				break;
 | |
| 			}
 | |
| 			node = next;
 | |
| 		}
 | |
| 		while (node);
 | |
| 	}
 | |
| 	
 | |
| 	const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
 | |
| 
 | |
| 	// Reset query.
 | |
| 	memset(&m_query, 0, sizeof(dtQueryData));
 | |
| 	
 | |
| 	*pathCount = n;
 | |
| 	
 | |
| 	return DT_SUCCESS | details;
 | |
| }
 | |
| 
 | |
| 
 | |
| dtStatus dtNavMeshQuery::appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref,
 | |
| 									  float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
 | |
| 									  int* straightPathCount, const int maxStraightPath) const
 | |
| {
 | |
| 	if ((*straightPathCount) > 0 && dtVequal(&straightPath[((*straightPathCount)-1)*3], pos))
 | |
| 	{
 | |
| 		// The vertices are equal, update flags and poly.
 | |
| 		if (straightPathFlags)
 | |
| 			straightPathFlags[(*straightPathCount)-1] = flags;
 | |
| 		if (straightPathRefs)
 | |
| 			straightPathRefs[(*straightPathCount)-1] = ref;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		// Append new vertex.
 | |
| 		dtVcopy(&straightPath[(*straightPathCount)*3], pos);
 | |
| 		if (straightPathFlags)
 | |
| 			straightPathFlags[(*straightPathCount)] = flags;
 | |
| 		if (straightPathRefs)
 | |
| 			straightPathRefs[(*straightPathCount)] = ref;
 | |
| 		(*straightPathCount)++;
 | |
| 
 | |
| 		// If there is no space to append more vertices, return.
 | |
| 		if ((*straightPathCount) >= maxStraightPath)
 | |
| 		{
 | |
| 			return DT_SUCCESS | DT_BUFFER_TOO_SMALL;
 | |
| 		}
 | |
| 
 | |
| 		// If reached end of path, return.
 | |
| 		if (flags == DT_STRAIGHTPATH_END)
 | |
| 		{
 | |
| 			return DT_SUCCESS;
 | |
| 		}
 | |
| 	}
 | |
| 	return DT_IN_PROGRESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path,
 | |
| 									  float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
 | |
| 									  int* straightPathCount, const int maxStraightPath, const int options) const
 | |
| {
 | |
| 	const float* startPos = &straightPath[(*straightPathCount-1)*3];
 | |
| 	// Append or update last vertex
 | |
| 	dtStatus stat = 0;
 | |
| 	for (int i = startIdx; i < endIdx; i++)
 | |
| 	{
 | |
| 		// Calculate portal
 | |
| 		const dtPolyRef from = path[i];
 | |
| 		const dtMeshTile* fromTile = 0;
 | |
| 		const dtPoly* fromPoly = 0;
 | |
| 		if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly)))
 | |
| 			return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 		
 | |
| 		const dtPolyRef to = path[i+1];
 | |
| 		const dtMeshTile* toTile = 0;
 | |
| 		const dtPoly* toPoly = 0;
 | |
| 		if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly)))
 | |
| 			return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 		
 | |
| 		float left[3], right[3];
 | |
| 		if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right)))
 | |
| 			break;
 | |
| 	
 | |
| 		if (options & DT_STRAIGHTPATH_AREA_CROSSINGS)
 | |
| 		{
 | |
| 			// Skip intersection if only area crossings are requested.
 | |
| 			if (fromPoly->getArea() == toPoly->getArea())
 | |
| 				continue;
 | |
| 		}
 | |
| 		
 | |
| 		// Append intersection
 | |
| 		float s,t;
 | |
| 		if (dtIntersectSegSeg2D(startPos, endPos, left, right, s, t))
 | |
| 		{
 | |
| 			float pt[3];
 | |
| 			dtVlerp(pt, left,right, t);
 | |
| 
 | |
| 			stat = appendVertex(pt, 0, path[i+1],
 | |
| 								straightPath, straightPathFlags, straightPathRefs,
 | |
| 								straightPathCount, maxStraightPath);
 | |
| 			if (stat != DT_IN_PROGRESS)
 | |
| 				return stat;
 | |
| 		}
 | |
| 	}
 | |
| 	return DT_IN_PROGRESS;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| /// 
 | |
| /// This method peforms what is often called 'string pulling'.
 | |
| ///
 | |
| /// The start position is clamped to the first polygon in the path, and the 
 | |
| /// end position is clamped to the last. So the start and end positions should 
 | |
| /// normally be within or very near the first and last polygons respectively.
 | |
| ///
 | |
| /// The returned polygon references represent the reference id of the polygon 
 | |
| /// that is entered at the associated path position. The reference id associated 
 | |
| /// with the end point will always be zero.  This allows, for example, matching 
 | |
| /// off-mesh link points to their representative polygons.
 | |
| ///
 | |
| /// If the provided result buffers are too small for the entire result set, 
 | |
| /// they will be filled as far as possible from the start toward the end 
 | |
| /// position.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* endPos,
 | |
| 										  const dtPolyRef* path, const int pathSize,
 | |
| 										  float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
 | |
| 										  int* straightPathCount, const int maxStraightPath, const int options) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 
 | |
| 	if (!straightPathCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*straightPathCount = 0;
 | |
| 
 | |
| 	if (!startPos || !dtVisfinite(startPos) ||
 | |
| 		!endPos || !dtVisfinite(endPos) ||
 | |
| 		!path || pathSize <= 0 || !path[0] ||
 | |
| 		maxStraightPath <= 0)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	dtStatus stat = 0;
 | |
| 	
 | |
| 	// TODO: Should this be callers responsibility?
 | |
| 	float closestStartPos[3];
 | |
| 	if (dtStatusFailed(closestPointOnPolyBoundary(path[0], startPos, closestStartPos)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	float closestEndPos[3];
 | |
| 	if (dtStatusFailed(closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	// Add start point.
 | |
| 	stat = appendVertex(closestStartPos, DT_STRAIGHTPATH_START, path[0],
 | |
| 						straightPath, straightPathFlags, straightPathRefs,
 | |
| 						straightPathCount, maxStraightPath);
 | |
| 	if (stat != DT_IN_PROGRESS)
 | |
| 		return stat;
 | |
| 	
 | |
| 	if (pathSize > 1)
 | |
| 	{
 | |
| 		float portalApex[3], portalLeft[3], portalRight[3];
 | |
| 		dtVcopy(portalApex, closestStartPos);
 | |
| 		dtVcopy(portalLeft, portalApex);
 | |
| 		dtVcopy(portalRight, portalApex);
 | |
| 		int apexIndex = 0;
 | |
| 		int leftIndex = 0;
 | |
| 		int rightIndex = 0;
 | |
| 		
 | |
| 		unsigned char leftPolyType = 0;
 | |
| 		unsigned char rightPolyType = 0;
 | |
| 		
 | |
| 		dtPolyRef leftPolyRef = path[0];
 | |
| 		dtPolyRef rightPolyRef = path[0];
 | |
| 		
 | |
| 		for (int i = 0; i < pathSize; ++i)
 | |
| 		{
 | |
| 			float left[3], right[3];
 | |
| 			unsigned char toType;
 | |
| 			
 | |
| 			if (i+1 < pathSize)
 | |
| 			{
 | |
| 				unsigned char fromType; // fromType is ignored.
 | |
| 
 | |
| 				// Next portal.
 | |
| 				if (dtStatusFailed(getPortalPoints(path[i], path[i+1], left, right, fromType, toType)))
 | |
| 				{
 | |
| 					// Failed to get portal points, in practice this means that path[i+1] is invalid polygon.
 | |
| 					// Clamp the end point to path[i], and return the path so far.
 | |
| 					
 | |
| 					if (dtStatusFailed(closestPointOnPolyBoundary(path[i], endPos, closestEndPos)))
 | |
| 					{
 | |
| 						// This should only happen when the first polygon is invalid.
 | |
| 						return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 					}
 | |
| 
 | |
| 					// Apeend portals along the current straight path segment.
 | |
| 					if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
 | |
| 					{
 | |
| 						// Ignore status return value as we're just about to return anyway.
 | |
| 						appendPortals(apexIndex, i, closestEndPos, path,
 | |
| 											 straightPath, straightPathFlags, straightPathRefs,
 | |
| 											 straightPathCount, maxStraightPath, options);
 | |
| 					}
 | |
| 
 | |
| 					// Ignore status return value as we're just about to return anyway.
 | |
| 					appendVertex(closestEndPos, 0, path[i],
 | |
| 										straightPath, straightPathFlags, straightPathRefs,
 | |
| 										straightPathCount, maxStraightPath);
 | |
| 					
 | |
| 					return DT_SUCCESS | DT_PARTIAL_RESULT | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0);
 | |
| 				}
 | |
| 				
 | |
| 				// If starting really close the portal, advance.
 | |
| 				if (i == 0)
 | |
| 				{
 | |
| 					float t;
 | |
| 					if (dtDistancePtSegSqr2D(portalApex, left, right, t) < dtSqr(0.001f))
 | |
| 						continue;
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				// End of the path.
 | |
| 				dtVcopy(left, closestEndPos);
 | |
| 				dtVcopy(right, closestEndPos);
 | |
| 				
 | |
| 				toType = DT_POLYTYPE_GROUND;
 | |
| 			}
 | |
| 			
 | |
| 			// Right vertex.
 | |
| 			if (dtTriArea2D(portalApex, portalRight, right) <= 0.0f)
 | |
| 			{
 | |
| 				if (dtVequal(portalApex, portalRight) || dtTriArea2D(portalApex, portalLeft, right) > 0.0f)
 | |
| 				{
 | |
| 					dtVcopy(portalRight, right);
 | |
| 					rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
 | |
| 					rightPolyType = toType;
 | |
| 					rightIndex = i;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					// Append portals along the current straight path segment.
 | |
| 					if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
 | |
| 					{
 | |
| 						stat = appendPortals(apexIndex, leftIndex, portalLeft, path,
 | |
| 											 straightPath, straightPathFlags, straightPathRefs,
 | |
| 											 straightPathCount, maxStraightPath, options);
 | |
| 						if (stat != DT_IN_PROGRESS)
 | |
| 							return stat;					
 | |
| 					}
 | |
| 				
 | |
| 					dtVcopy(portalApex, portalLeft);
 | |
| 					apexIndex = leftIndex;
 | |
| 					
 | |
| 					unsigned char flags = 0;
 | |
| 					if (!leftPolyRef)
 | |
| 						flags = DT_STRAIGHTPATH_END;
 | |
| 					else if (leftPolyType == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 						flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION;
 | |
| 					dtPolyRef ref = leftPolyRef;
 | |
| 					
 | |
| 					// Append or update vertex
 | |
| 					stat = appendVertex(portalApex, flags, ref,
 | |
| 										straightPath, straightPathFlags, straightPathRefs,
 | |
| 										straightPathCount, maxStraightPath);
 | |
| 					if (stat != DT_IN_PROGRESS)
 | |
| 						return stat;
 | |
| 					
 | |
| 					dtVcopy(portalLeft, portalApex);
 | |
| 					dtVcopy(portalRight, portalApex);
 | |
| 					leftIndex = apexIndex;
 | |
| 					rightIndex = apexIndex;
 | |
| 					
 | |
| 					// Restart
 | |
| 					i = apexIndex;
 | |
| 					
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 			
 | |
| 			// Left vertex.
 | |
| 			if (dtTriArea2D(portalApex, portalLeft, left) >= 0.0f)
 | |
| 			{
 | |
| 				if (dtVequal(portalApex, portalLeft) || dtTriArea2D(portalApex, portalRight, left) < 0.0f)
 | |
| 				{
 | |
| 					dtVcopy(portalLeft, left);
 | |
| 					leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
 | |
| 					leftPolyType = toType;
 | |
| 					leftIndex = i;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					// Append portals along the current straight path segment.
 | |
| 					if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
 | |
| 					{
 | |
| 						stat = appendPortals(apexIndex, rightIndex, portalRight, path,
 | |
| 											 straightPath, straightPathFlags, straightPathRefs,
 | |
| 											 straightPathCount, maxStraightPath, options);
 | |
| 						if (stat != DT_IN_PROGRESS)
 | |
| 							return stat;
 | |
| 					}
 | |
| 
 | |
| 					dtVcopy(portalApex, portalRight);
 | |
| 					apexIndex = rightIndex;
 | |
| 					
 | |
| 					unsigned char flags = 0;
 | |
| 					if (!rightPolyRef)
 | |
| 						flags = DT_STRAIGHTPATH_END;
 | |
| 					else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 						flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION;
 | |
| 					dtPolyRef ref = rightPolyRef;
 | |
| 
 | |
| 					// Append or update vertex
 | |
| 					stat = appendVertex(portalApex, flags, ref,
 | |
| 										straightPath, straightPathFlags, straightPathRefs,
 | |
| 										straightPathCount, maxStraightPath);
 | |
| 					if (stat != DT_IN_PROGRESS)
 | |
| 						return stat;
 | |
| 					
 | |
| 					dtVcopy(portalLeft, portalApex);
 | |
| 					dtVcopy(portalRight, portalApex);
 | |
| 					leftIndex = apexIndex;
 | |
| 					rightIndex = apexIndex;
 | |
| 					
 | |
| 					// Restart
 | |
| 					i = apexIndex;
 | |
| 					
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Append portals along the current straight path segment.
 | |
| 		if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
 | |
| 		{
 | |
| 			stat = appendPortals(apexIndex, pathSize-1, closestEndPos, path,
 | |
| 								 straightPath, straightPathFlags, straightPathRefs,
 | |
| 								 straightPathCount, maxStraightPath, options);
 | |
| 			if (stat != DT_IN_PROGRESS)
 | |
| 				return stat;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Ignore status return value as we're just about to return anyway.
 | |
| 	appendVertex(closestEndPos, DT_STRAIGHTPATH_END, 0,
 | |
| 						straightPath, straightPathFlags, straightPathRefs,
 | |
| 						straightPathCount, maxStraightPath);
 | |
| 	
 | |
| 	return DT_SUCCESS | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0);
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// This method is optimized for small delta movement and a small number of 
 | |
| /// polygons. If used for too great a distance, the result set will form an 
 | |
| /// incomplete path.
 | |
| ///
 | |
| /// @p resultPos will equal the @p endPos if the end is reached. 
 | |
| /// Otherwise the closest reachable position will be returned.
 | |
| /// 
 | |
| /// @p resultPos is not projected onto the surface of the navigation 
 | |
| /// mesh. Use #getPolyHeight if this is needed.
 | |
| ///
 | |
| /// This method treats the end position in the same manner as 
 | |
| /// the #raycast method. (As a 2D point.) See that method's documentation 
 | |
| /// for details.
 | |
| /// 
 | |
| /// If the @p visited array is too small to hold the entire result set, it will 
 | |
| /// be filled as far as possible from the start position toward the end 
 | |
| /// position.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos,
 | |
| 										  const dtQueryFilter* filter,
 | |
| 										  float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_tinyNodePool);
 | |
| 
 | |
| 	if (!visitedCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*visitedCount = 0;
 | |
| 
 | |
| 	if (!m_nav->isValidPolyRef(startRef) ||
 | |
| 		!startPos || !dtVisfinite(startPos) ||
 | |
| 		!endPos || !dtVisfinite(endPos) ||
 | |
| 		!filter || !resultPos || !visited ||
 | |
| 		maxVisitedSize <= 0)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 	
 | |
| 	static const int MAX_STACK = 48;
 | |
| 	dtNode* stack[MAX_STACK];
 | |
| 	int nstack = 0;
 | |
| 	
 | |
| 	m_tinyNodePool->clear();
 | |
| 	
 | |
| 	dtNode* startNode = m_tinyNodePool->getNode(startRef);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->cost = 0;
 | |
| 	startNode->total = 0;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_CLOSED;
 | |
| 	stack[nstack++] = startNode;
 | |
| 	
 | |
| 	float bestPos[3];
 | |
| 	float bestDist = FLT_MAX;
 | |
| 	dtNode* bestNode = 0;
 | |
| 	dtVcopy(bestPos, startPos);
 | |
| 	
 | |
| 	// Search constraints
 | |
| 	float searchPos[3], searchRadSqr;
 | |
| 	dtVlerp(searchPos, startPos, endPos, 0.5f);
 | |
| 	searchRadSqr = dtSqr(dtVdist(startPos, endPos)/2.0f + 0.001f);
 | |
| 	
 | |
| 	float verts[DT_VERTS_PER_POLYGON*3];
 | |
| 	
 | |
| 	while (nstack)
 | |
| 	{
 | |
| 		// Pop front.
 | |
| 		dtNode* curNode = stack[0];
 | |
| 		for (int i = 0; i < nstack-1; ++i)
 | |
| 			stack[i] = stack[i+1];
 | |
| 		nstack--;
 | |
| 		
 | |
| 		// Get poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef curRef = curNode->id;
 | |
| 		const dtMeshTile* curTile = 0;
 | |
| 		const dtPoly* curPoly = 0;
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly);			
 | |
| 		
 | |
| 		// Collect vertices.
 | |
| 		const int nverts = curPoly->vertCount;
 | |
| 		for (int i = 0; i < nverts; ++i)
 | |
| 			dtVcopy(&verts[i*3], &curTile->verts[curPoly->verts[i]*3]);
 | |
| 		
 | |
| 		// If target is inside the poly, stop search.
 | |
| 		if (dtPointInPolygon(endPos, verts, nverts))
 | |
| 		{
 | |
| 			bestNode = curNode;
 | |
| 			dtVcopy(bestPos, endPos);
 | |
| 			break;
 | |
| 		}
 | |
| 		
 | |
| 		// Find wall edges and find nearest point inside the walls.
 | |
| 		for (int i = 0, j = (int)curPoly->vertCount-1; i < (int)curPoly->vertCount; j = i++)
 | |
| 		{
 | |
| 			// Find links to neighbours.
 | |
| 			static const int MAX_NEIS = 8;
 | |
| 			int nneis = 0;
 | |
| 			dtPolyRef neis[MAX_NEIS];
 | |
| 			
 | |
| 			if (curPoly->neis[j] & DT_EXT_LINK)
 | |
| 			{
 | |
| 				// Tile border.
 | |
| 				for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next)
 | |
| 				{
 | |
| 					const dtLink* link = &curTile->links[k];
 | |
| 					if (link->edge == j)
 | |
| 					{
 | |
| 						if (link->ref != 0)
 | |
| 						{
 | |
| 							const dtMeshTile* neiTile = 0;
 | |
| 							const dtPoly* neiPoly = 0;
 | |
| 							m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
 | |
| 							if (filter->passFilter(link->ref, neiTile, neiPoly))
 | |
| 							{
 | |
| 								if (nneis < MAX_NEIS)
 | |
| 									neis[nneis++] = link->ref;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			else if (curPoly->neis[j])
 | |
| 			{
 | |
| 				const unsigned int idx = (unsigned int)(curPoly->neis[j]-1);
 | |
| 				const dtPolyRef ref = m_nav->getPolyRefBase(curTile) | idx;
 | |
| 				if (filter->passFilter(ref, curTile, &curTile->polys[idx]))
 | |
| 				{
 | |
| 					// Internal edge, encode id.
 | |
| 					neis[nneis++] = ref;
 | |
| 				}
 | |
| 			}
 | |
| 			
 | |
| 			if (!nneis)
 | |
| 			{
 | |
| 				// Wall edge, calc distance.
 | |
| 				const float* vj = &verts[j*3];
 | |
| 				const float* vi = &verts[i*3];
 | |
| 				float tseg;
 | |
| 				const float distSqr = dtDistancePtSegSqr2D(endPos, vj, vi, tseg);
 | |
| 				if (distSqr < bestDist)
 | |
| 				{
 | |
|                     // Update nearest distance.
 | |
| 					dtVlerp(bestPos, vj,vi, tseg);
 | |
| 					bestDist = distSqr;
 | |
| 					bestNode = curNode;
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				for (int k = 0; k < nneis; ++k)
 | |
| 				{
 | |
| 					// Skip if no node can be allocated.
 | |
| 					dtNode* neighbourNode = m_tinyNodePool->getNode(neis[k]);
 | |
| 					if (!neighbourNode)
 | |
| 						continue;
 | |
| 					// Skip if already visited.
 | |
| 					if (neighbourNode->flags & DT_NODE_CLOSED)
 | |
| 						continue;
 | |
| 					
 | |
| 					// Skip the link if it is too far from search constraint.
 | |
| 					// TODO: Maybe should use getPortalPoints(), but this one is way faster.
 | |
| 					const float* vj = &verts[j*3];
 | |
| 					const float* vi = &verts[i*3];
 | |
| 					float tseg;
 | |
| 					float distSqr = dtDistancePtSegSqr2D(searchPos, vj, vi, tseg);
 | |
| 					if (distSqr > searchRadSqr)
 | |
| 						continue;
 | |
| 					
 | |
| 					// Mark as the node as visited and push to queue.
 | |
| 					if (nstack < MAX_STACK)
 | |
| 					{
 | |
| 						neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode);
 | |
| 						neighbourNode->flags |= DT_NODE_CLOSED;
 | |
| 						stack[nstack++] = neighbourNode;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	int n = 0;
 | |
| 	if (bestNode)
 | |
| 	{
 | |
| 		// Reverse the path.
 | |
| 		dtNode* prev = 0;
 | |
| 		dtNode* node = bestNode;
 | |
| 		do
 | |
| 		{
 | |
| 			dtNode* next = m_tinyNodePool->getNodeAtIdx(node->pidx);
 | |
| 			node->pidx = m_tinyNodePool->getNodeIdx(prev);
 | |
| 			prev = node;
 | |
| 			node = next;
 | |
| 		}
 | |
| 		while (node);
 | |
| 		
 | |
| 		// Store result
 | |
| 		node = prev;
 | |
| 		do
 | |
| 		{
 | |
| 			visited[n++] = node->id;
 | |
| 			if (n >= maxVisitedSize)
 | |
| 			{
 | |
| 				status |= DT_BUFFER_TOO_SMALL;
 | |
| 				break;
 | |
| 			}
 | |
| 			node = m_tinyNodePool->getNodeAtIdx(node->pidx);
 | |
| 		}
 | |
| 		while (node);
 | |
| 	}
 | |
| 	
 | |
| 	dtVcopy(resultPos, bestPos);
 | |
| 	
 | |
| 	*visitedCount = n;
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right,
 | |
| 										 unsigned char& fromType, unsigned char& toType) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	
 | |
| 	const dtMeshTile* fromTile = 0;
 | |
| 	const dtPoly* fromPoly = 0;
 | |
| 	if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	fromType = fromPoly->getType();
 | |
| 
 | |
| 	const dtMeshTile* toTile = 0;
 | |
| 	const dtPoly* toPoly = 0;
 | |
| 	if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	toType = toPoly->getType();
 | |
| 		
 | |
| 	return getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right);
 | |
| }
 | |
| 
 | |
| // Returns portal points between two polygons.
 | |
| dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
 | |
| 										 dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
 | |
| 										 float* left, float* right) const
 | |
| {
 | |
| 	// Find the link that points to the 'to' polygon.
 | |
| 	const dtLink* link = 0;
 | |
| 	for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
 | |
| 	{
 | |
| 		if (fromTile->links[i].ref == to)
 | |
| 		{
 | |
| 			link = &fromTile->links[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!link)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	// Handle off-mesh connections.
 | |
| 	if (fromPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 	{
 | |
| 		// Find link that points to first vertex.
 | |
| 		for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
 | |
| 		{
 | |
| 			if (fromTile->links[i].ref == to)
 | |
| 			{
 | |
| 				const int v = fromTile->links[i].edge;
 | |
| 				dtVcopy(left, &fromTile->verts[fromPoly->verts[v]*3]);
 | |
| 				dtVcopy(right, &fromTile->verts[fromPoly->verts[v]*3]);
 | |
| 				return DT_SUCCESS;
 | |
| 			}
 | |
| 		}
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	if (toPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 	{
 | |
| 		for (unsigned int i = toPoly->firstLink; i != DT_NULL_LINK; i = toTile->links[i].next)
 | |
| 		{
 | |
| 			if (toTile->links[i].ref == from)
 | |
| 			{
 | |
| 				const int v = toTile->links[i].edge;
 | |
| 				dtVcopy(left, &toTile->verts[toPoly->verts[v]*3]);
 | |
| 				dtVcopy(right, &toTile->verts[toPoly->verts[v]*3]);
 | |
| 				return DT_SUCCESS;
 | |
| 			}
 | |
| 		}
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	// Find portal vertices.
 | |
| 	const int v0 = fromPoly->verts[link->edge];
 | |
| 	const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount];
 | |
| 	dtVcopy(left, &fromTile->verts[v0*3]);
 | |
| 	dtVcopy(right, &fromTile->verts[v1*3]);
 | |
| 	
 | |
| 	// If the link is at tile boundary, dtClamp the vertices to
 | |
| 	// the link width.
 | |
| 	if (link->side != 0xff)
 | |
| 	{
 | |
| 		// Unpack portal limits.
 | |
| 		if (link->bmin != 0 || link->bmax != 255)
 | |
| 		{
 | |
| 			const float s = 1.0f/255.0f;
 | |
| 			const float tmin = link->bmin*s;
 | |
| 			const float tmax = link->bmax*s;
 | |
| 			dtVlerp(left, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmin);
 | |
| 			dtVlerp(right, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmax);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| // Returns edge mid point between two polygons.
 | |
| dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const
 | |
| {
 | |
| 	float left[3], right[3];
 | |
| 	unsigned char fromType, toType;
 | |
| 	if (dtStatusFailed(getPortalPoints(from, to, left,right, fromType, toType)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	mid[0] = (left[0]+right[0])*0.5f;
 | |
| 	mid[1] = (left[1]+right[1])*0.5f;
 | |
| 	mid[2] = (left[2]+right[2])*0.5f;
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
 | |
| 										 dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
 | |
| 										 float* mid) const
 | |
| {
 | |
| 	float left[3], right[3];
 | |
| 	if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	mid[0] = (left[0]+right[0])*0.5f;
 | |
| 	mid[1] = (left[1]+right[1])*0.5f;
 | |
| 	mid[2] = (left[2]+right[2])*0.5f;
 | |
| 	return DT_SUCCESS;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// This method is meant to be used for quick, short distance checks.
 | |
| ///
 | |
| /// If the path array is too small to hold the result, it will be filled as 
 | |
| /// far as possible from the start postion toward the end position.
 | |
| ///
 | |
| /// <b>Using the Hit Parameter (t)</b>
 | |
| /// 
 | |
| /// If the hit parameter is a very high value (FLT_MAX), then the ray has hit 
 | |
| /// the end position. In this case the path represents a valid corridor to the 
 | |
| /// end position and the value of @p hitNormal is undefined.
 | |
| ///
 | |
| /// If the hit parameter is zero, then the start position is on the wall that 
 | |
| /// was hit and the value of @p hitNormal is undefined.
 | |
| ///
 | |
| /// If 0 < t < 1.0 then the following applies:
 | |
| ///
 | |
| /// @code
 | |
| /// distanceToHitBorder = distanceToEndPosition * t
 | |
| /// hitPoint = startPos + (endPos - startPos) * t
 | |
| /// @endcode
 | |
| ///
 | |
| /// <b>Use Case Restriction</b>
 | |
| ///
 | |
| /// The raycast ignores the y-value of the end position. (2D check.) This 
 | |
| /// places significant limits on how it can be used. For example:
 | |
| ///
 | |
| /// Consider a scene where there is a main floor with a second floor balcony 
 | |
| /// that hangs over the main floor. So the first floor mesh extends below the 
 | |
| /// balcony mesh. The start position is somewhere on the first floor. The end 
 | |
| /// position is on the balcony.
 | |
| ///
 | |
| /// The raycast will search toward the end position along the first floor mesh. 
 | |
| /// If it reaches the end position's xz-coordinates it will indicate FLT_MAX
 | |
| /// (no wall hit), meaning it reached the end position. This is one example of why
 | |
| /// this method is meant for short distance checks.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
 | |
| 								 const dtQueryFilter* filter,
 | |
| 								 float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const
 | |
| {
 | |
| 	dtRaycastHit hit;
 | |
| 	hit.path = path;
 | |
| 	hit.maxPath = maxPath;
 | |
| 
 | |
| 	dtStatus status = raycast(startRef, startPos, endPos, filter, 0, &hit);
 | |
| 	
 | |
| 	*t = hit.t;
 | |
| 	if (hitNormal)
 | |
| 		dtVcopy(hitNormal, hit.hitNormal);
 | |
| 	if (pathCount)
 | |
| 		*pathCount = hit.pathCount;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// This method is meant to be used for quick, short distance checks.
 | |
| ///
 | |
| /// If the path array is too small to hold the result, it will be filled as 
 | |
| /// far as possible from the start postion toward the end position.
 | |
| ///
 | |
| /// <b>Using the Hit Parameter t of RaycastHit</b>
 | |
| /// 
 | |
| /// If the hit parameter is a very high value (FLT_MAX), then the ray has hit 
 | |
| /// the end position. In this case the path represents a valid corridor to the 
 | |
| /// end position and the value of @p hitNormal is undefined.
 | |
| ///
 | |
| /// If the hit parameter is zero, then the start position is on the wall that 
 | |
| /// was hit and the value of @p hitNormal is undefined.
 | |
| ///
 | |
| /// If 0 < t < 1.0 then the following applies:
 | |
| ///
 | |
| /// @code
 | |
| /// distanceToHitBorder = distanceToEndPosition * t
 | |
| /// hitPoint = startPos + (endPos - startPos) * t
 | |
| /// @endcode
 | |
| ///
 | |
| /// <b>Use Case Restriction</b>
 | |
| ///
 | |
| /// The raycast ignores the y-value of the end position. (2D check.) This 
 | |
| /// places significant limits on how it can be used. For example:
 | |
| ///
 | |
| /// Consider a scene where there is a main floor with a second floor balcony 
 | |
| /// that hangs over the main floor. So the first floor mesh extends below the 
 | |
| /// balcony mesh. The start position is somewhere on the first floor. The end 
 | |
| /// position is on the balcony.
 | |
| ///
 | |
| /// The raycast will search toward the end position along the first floor mesh. 
 | |
| /// If it reaches the end position's xz-coordinates it will indicate FLT_MAX
 | |
| /// (no wall hit), meaning it reached the end position. This is one example of why
 | |
| /// this method is meant for short distance checks.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
 | |
| 								 const dtQueryFilter* filter, const unsigned int options,
 | |
| 								 dtRaycastHit* hit, dtPolyRef prevRef) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 
 | |
| 	if (!hit)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	hit->t = 0;
 | |
| 	hit->pathCount = 0;
 | |
| 	hit->pathCost = 0;
 | |
| 
 | |
| 	// Validate input
 | |
| 	if (!m_nav->isValidPolyRef(startRef) ||
 | |
| 		!startPos || !dtVisfinite(startPos) ||
 | |
| 		!endPos || !dtVisfinite(endPos) ||
 | |
| 		!filter ||
 | |
| 		(prevRef && !m_nav->isValidPolyRef(prevRef)))
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	float dir[3], curPos[3], lastPos[3];
 | |
| 	float verts[DT_VERTS_PER_POLYGON*3+3];	
 | |
| 	int n = 0;
 | |
| 
 | |
| 	dtVcopy(curPos, startPos);
 | |
| 	dtVsub(dir, endPos, startPos);
 | |
| 	dtVset(hit->hitNormal, 0, 0, 0);
 | |
| 
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 
 | |
| 	const dtMeshTile* prevTile, *tile, *nextTile;
 | |
| 	const dtPoly* prevPoly, *poly, *nextPoly;
 | |
| 	dtPolyRef curRef;
 | |
| 
 | |
| 	// The API input has been checked already, skip checking internal data.
 | |
| 	curRef = startRef;
 | |
| 	tile = 0;
 | |
| 	poly = 0;
 | |
| 	m_nav->getTileAndPolyByRefUnsafe(curRef, &tile, &poly);
 | |
| 	nextTile = prevTile = tile;
 | |
| 	nextPoly = prevPoly = poly;
 | |
| 	if (prevRef)
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(prevRef, &prevTile, &prevPoly);
 | |
| 
 | |
| 	while (curRef)
 | |
| 	{
 | |
| 		// Cast ray against current polygon.
 | |
| 		
 | |
| 		// Collect vertices.
 | |
| 		int nv = 0;
 | |
| 		for (int i = 0; i < (int)poly->vertCount; ++i)
 | |
| 		{
 | |
| 			dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
 | |
| 			nv++;
 | |
| 		}
 | |
| 		
 | |
| 		float tmin, tmax;
 | |
| 		int segMin, segMax;
 | |
| 		if (!dtIntersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
 | |
| 		{
 | |
| 			// Could not hit the polygon, keep the old t and report hit.
 | |
| 			hit->pathCount = n;
 | |
| 			return status;
 | |
| 		}
 | |
| 
 | |
| 		hit->hitEdgeIndex = segMax;
 | |
| 
 | |
| 		// Keep track of furthest t so far.
 | |
| 		if (tmax > hit->t)
 | |
| 			hit->t = tmax;
 | |
| 		
 | |
| 		// Store visited polygons.
 | |
| 		if (n < hit->maxPath)
 | |
| 			hit->path[n++] = curRef;
 | |
| 		else
 | |
| 			status |= DT_BUFFER_TOO_SMALL;
 | |
| 
 | |
| 		// Ray end is completely inside the polygon.
 | |
| 		if (segMax == -1)
 | |
| 		{
 | |
| 			hit->t = FLT_MAX;
 | |
| 			hit->pathCount = n;
 | |
| 			
 | |
| 			// add the cost
 | |
| 			if (options & DT_RAYCAST_USE_COSTS)
 | |
| 				hit->pathCost += filter->getCost(curPos, endPos, prevRef, prevTile, prevPoly, curRef, tile, poly, curRef, tile, poly);
 | |
| 			return status;
 | |
| 		}
 | |
| 
 | |
| 		// Follow neighbours.
 | |
| 		dtPolyRef nextRef = 0;
 | |
| 		
 | |
| 		for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
 | |
| 		{
 | |
| 			const dtLink* link = &tile->links[i];
 | |
| 			
 | |
| 			// Find link which contains this edge.
 | |
| 			if ((int)link->edge != segMax)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Get pointer to the next polygon.
 | |
| 			nextTile = 0;
 | |
| 			nextPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(link->ref, &nextTile, &nextPoly);
 | |
| 			
 | |
| 			// Skip off-mesh connections.
 | |
| 			if (nextPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Skip links based on filter.
 | |
| 			if (!filter->passFilter(link->ref, nextTile, nextPoly))
 | |
| 				continue;
 | |
| 			
 | |
| 			// If the link is internal, just return the ref.
 | |
| 			if (link->side == 0xff)
 | |
| 			{
 | |
| 				nextRef = link->ref;
 | |
| 				break;
 | |
| 			}
 | |
| 			
 | |
| 			// If the link is at tile boundary,
 | |
| 			
 | |
| 			// Check if the link spans the whole edge, and accept.
 | |
| 			if (link->bmin == 0 && link->bmax == 255)
 | |
| 			{
 | |
| 				nextRef = link->ref;
 | |
| 				break;
 | |
| 			}
 | |
| 			
 | |
| 			// Check for partial edge links.
 | |
| 			const int v0 = poly->verts[link->edge];
 | |
| 			const int v1 = poly->verts[(link->edge+1) % poly->vertCount];
 | |
| 			const float* left = &tile->verts[v0*3];
 | |
| 			const float* right = &tile->verts[v1*3];
 | |
| 			
 | |
| 			// Check that the intersection lies inside the link portal.
 | |
| 			if (link->side == 0 || link->side == 4)
 | |
| 			{
 | |
| 				// Calculate link size.
 | |
| 				const float s = 1.0f/255.0f;
 | |
| 				float lmin = left[2] + (right[2] - left[2])*(link->bmin*s);
 | |
| 				float lmax = left[2] + (right[2] - left[2])*(link->bmax*s);
 | |
| 				if (lmin > lmax) dtSwap(lmin, lmax);
 | |
| 				
 | |
| 				// Find Z intersection.
 | |
| 				float z = startPos[2] + (endPos[2]-startPos[2])*tmax;
 | |
| 				if (z >= lmin && z <= lmax)
 | |
| 				{
 | |
| 					nextRef = link->ref;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			else if (link->side == 2 || link->side == 6)
 | |
| 			{
 | |
| 				// Calculate link size.
 | |
| 				const float s = 1.0f/255.0f;
 | |
| 				float lmin = left[0] + (right[0] - left[0])*(link->bmin*s);
 | |
| 				float lmax = left[0] + (right[0] - left[0])*(link->bmax*s);
 | |
| 				if (lmin > lmax) dtSwap(lmin, lmax);
 | |
| 				
 | |
| 				// Find X intersection.
 | |
| 				float x = startPos[0] + (endPos[0]-startPos[0])*tmax;
 | |
| 				if (x >= lmin && x <= lmax)
 | |
| 				{
 | |
| 					nextRef = link->ref;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		
 | |
| 		// add the cost
 | |
| 		if (options & DT_RAYCAST_USE_COSTS)
 | |
| 		{
 | |
| 			// compute the intersection point at the furthest end of the polygon
 | |
| 			// and correct the height (since the raycast moves in 2d)
 | |
| 			dtVcopy(lastPos, curPos);
 | |
| 			dtVmad(curPos, startPos, dir, hit->t);
 | |
| 			float* e1 = &verts[segMax*3];
 | |
| 			float* e2 = &verts[((segMax+1)%nv)*3];
 | |
| 			float eDir[3], diff[3];
 | |
| 			dtVsub(eDir, e2, e1);
 | |
| 			dtVsub(diff, curPos, e1);
 | |
| 			float s = dtSqr(eDir[0]) > dtSqr(eDir[2]) ? diff[0] / eDir[0] : diff[2] / eDir[2];
 | |
| 			curPos[1] = e1[1] + eDir[1] * s;
 | |
| 
 | |
| 			hit->pathCost += filter->getCost(lastPos, curPos, prevRef, prevTile, prevPoly, curRef, tile, poly, nextRef, nextTile, nextPoly);
 | |
| 		}
 | |
| 
 | |
| 		if (!nextRef)
 | |
| 		{
 | |
| 			// No neighbour, we hit a wall.
 | |
| 			
 | |
| 			// Calculate hit normal.
 | |
| 			const int a = segMax;
 | |
| 			const int b = segMax+1 < nv ? segMax+1 : 0;
 | |
| 			const float* va = &verts[a*3];
 | |
| 			const float* vb = &verts[b*3];
 | |
| 			const float dx = vb[0] - va[0];
 | |
| 			const float dz = vb[2] - va[2];
 | |
| 			hit->hitNormal[0] = dz;
 | |
| 			hit->hitNormal[1] = 0;
 | |
| 			hit->hitNormal[2] = -dx;
 | |
| 			dtVnormalize(hit->hitNormal);
 | |
| 			
 | |
| 			hit->pathCount = n;
 | |
| 			return status;
 | |
| 		}
 | |
| 
 | |
| 		// No hit, advance to neighbour polygon.
 | |
| 		prevRef = curRef;
 | |
| 		curRef = nextRef;
 | |
| 		prevTile = tile;
 | |
| 		tile = nextTile;
 | |
| 		prevPoly = poly;
 | |
| 		poly = nextPoly;
 | |
| 	}
 | |
| 	
 | |
| 	hit->pathCount = n;
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// At least one result array must be provided.
 | |
| ///
 | |
| /// The order of the result set is from least to highest cost to reach the polygon.
 | |
| ///
 | |
| /// A common use case for this method is to perform Dijkstra searches. 
 | |
| /// Candidate polygons are found by searching the graph beginning at the start polygon.
 | |
| ///
 | |
| /// If a polygon is not found via the graph search, even if it intersects the 
 | |
| /// search circle, it will not be included in the result set. For example:
 | |
| ///
 | |
| /// polyA is the start polygon.
 | |
| /// polyB shares an edge with polyA. (Is adjacent.)
 | |
| /// polyC shares an edge with polyB, but not with polyA
 | |
| /// Even if the search circle overlaps polyC, it will not be included in the 
 | |
| /// result set unless polyB is also in the set.
 | |
| /// 
 | |
| /// The value of the center point is used as the start position for cost 
 | |
| /// calculations. It is not projected onto the surface of the mesh, so its 
 | |
| /// y-value will effect the costs.
 | |
| ///
 | |
| /// Intersection tests occur in 2D. All polygons and the search circle are 
 | |
| /// projected onto the xz-plane. So the y-value of the center point does not 
 | |
| /// effect intersection tests.
 | |
| ///
 | |
| /// If the result arrays are to small to hold the entire result set, they will be 
 | |
| /// filled to capacity.
 | |
| /// 
 | |
| dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius,
 | |
| 											   const dtQueryFilter* filter,
 | |
| 											   dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
 | |
| 											   int* resultCount, const int maxResult) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_nodePool);
 | |
| 	dtAssert(m_openList);
 | |
| 
 | |
| 	if (!resultCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*resultCount = 0;
 | |
| 
 | |
| 	if (!m_nav->isValidPolyRef(startRef) ||
 | |
| 		!centerPos || !dtVisfinite(centerPos) ||
 | |
| 		radius < 0 || !dtMathIsfinite(radius) ||
 | |
| 		!filter || maxResult < 0)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	m_nodePool->clear();
 | |
| 	m_openList->clear();
 | |
| 	
 | |
| 	dtNode* startNode = m_nodePool->getNode(startRef);
 | |
| 	dtVcopy(startNode->pos, centerPos);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->cost = 0;
 | |
| 	startNode->total = 0;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_OPEN;
 | |
| 	m_openList->push(startNode);
 | |
| 	
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 	
 | |
| 	int n = 0;
 | |
| 	
 | |
| 	const float radiusSqr = dtSqr(radius);
 | |
| 	
 | |
| 	while (!m_openList->empty())
 | |
| 	{
 | |
| 		dtNode* bestNode = m_openList->pop();
 | |
| 		bestNode->flags &= ~DT_NODE_OPEN;
 | |
| 		bestNode->flags |= DT_NODE_CLOSED;
 | |
| 		
 | |
| 		// Get poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef bestRef = bestNode->id;
 | |
| 		const dtMeshTile* bestTile = 0;
 | |
| 		const dtPoly* bestPoly = 0;
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
 | |
| 		
 | |
| 		// Get parent poly and tile.
 | |
| 		dtPolyRef parentRef = 0;
 | |
| 		const dtMeshTile* parentTile = 0;
 | |
| 		const dtPoly* parentPoly = 0;
 | |
| 		if (bestNode->pidx)
 | |
| 			parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
 | |
| 		if (parentRef)
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
 | |
| 
 | |
| 		if (n < maxResult)
 | |
| 		{
 | |
| 			if (resultRef)
 | |
| 				resultRef[n] = bestRef;
 | |
| 			if (resultParent)
 | |
| 				resultParent[n] = parentRef;
 | |
| 			if (resultCost)
 | |
| 				resultCost[n] = bestNode->total;
 | |
| 			++n;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			status |= DT_BUFFER_TOO_SMALL;
 | |
| 		}
 | |
| 		
 | |
| 		for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
 | |
| 		{
 | |
| 			const dtLink* link = &bestTile->links[i];
 | |
| 			dtPolyRef neighbourRef = link->ref;
 | |
| 			// Skip invalid neighbours and do not follow back to parent.
 | |
| 			if (!neighbourRef || neighbourRef == parentRef)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Expand to neighbour
 | |
| 			const dtMeshTile* neighbourTile = 0;
 | |
| 			const dtPoly* neighbourPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
 | |
| 		
 | |
| 			// Do not advance if the polygon is excluded by the filter.
 | |
| 			if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
 | |
| 				continue;
 | |
| 			
 | |
| 			// Find edge and calc distance to the edge.
 | |
| 			float va[3], vb[3];
 | |
| 			if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
 | |
| 				continue;
 | |
| 			
 | |
| 			// If the circle is not touching the next polygon, skip it.
 | |
| 			float tseg;
 | |
| 			float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
 | |
| 			if (distSqr > radiusSqr)
 | |
| 				continue;
 | |
| 			
 | |
| 			dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
 | |
| 			if (!neighbourNode)
 | |
| 			{
 | |
| 				status |= DT_OUT_OF_NODES;
 | |
| 				continue;
 | |
| 			}
 | |
| 				
 | |
| 			if (neighbourNode->flags & DT_NODE_CLOSED)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Cost
 | |
| 			if (neighbourNode->flags == 0)
 | |
| 				dtVlerp(neighbourNode->pos, va, vb, 0.5f);
 | |
| 			
 | |
| 			float cost = filter->getCost(
 | |
| 				bestNode->pos, neighbourNode->pos,
 | |
| 				parentRef, parentTile, parentPoly,
 | |
| 				bestRef, bestTile, bestPoly,
 | |
| 				neighbourRef, neighbourTile, neighbourPoly);
 | |
| 
 | |
| 			const float total = bestNode->total + cost;
 | |
| 			
 | |
| 			// The node is already in open list and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			
 | |
| 			neighbourNode->id = neighbourRef;
 | |
| 			neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
 | |
| 			neighbourNode->total = total;
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_OPEN)
 | |
| 			{
 | |
| 				m_openList->modify(neighbourNode);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				neighbourNode->flags = DT_NODE_OPEN;
 | |
| 				m_openList->push(neighbourNode);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	*resultCount = n;
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// The order of the result set is from least to highest cost.
 | |
| /// 
 | |
| /// At least one result array must be provided.
 | |
| ///
 | |
| /// A common use case for this method is to perform Dijkstra searches. 
 | |
| /// Candidate polygons are found by searching the graph beginning at the start 
 | |
| /// polygon.
 | |
| /// 
 | |
| /// The same intersection test restrictions that apply to findPolysAroundCircle()
 | |
| /// method apply to this method.
 | |
| /// 
 | |
| /// The 3D centroid of the search polygon is used as the start position for cost 
 | |
| /// calculations.
 | |
| /// 
 | |
| /// Intersection tests occur in 2D. All polygons are projected onto the 
 | |
| /// xz-plane. So the y-values of the vertices do not effect intersection tests.
 | |
| /// 
 | |
| /// If the result arrays are is too small to hold the entire result set, they will 
 | |
| /// be filled to capacity.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts,
 | |
| 											  const dtQueryFilter* filter,
 | |
| 											  dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
 | |
| 											  int* resultCount, const int maxResult) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_nodePool);
 | |
| 	dtAssert(m_openList);
 | |
| 
 | |
| 	if (!resultCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*resultCount = 0;
 | |
| 
 | |
| 	if (!m_nav->isValidPolyRef(startRef) ||
 | |
| 		!verts || nverts < 3 ||
 | |
| 		!filter || maxResult < 0)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	// Validate input
 | |
| 	if (!startRef || !m_nav->isValidPolyRef(startRef))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	m_nodePool->clear();
 | |
| 	m_openList->clear();
 | |
| 	
 | |
| 	float centerPos[3] = {0,0,0};
 | |
| 	for (int i = 0; i < nverts; ++i)
 | |
| 		dtVadd(centerPos,centerPos,&verts[i*3]);
 | |
| 	dtVscale(centerPos,centerPos,1.0f/nverts);
 | |
| 
 | |
| 	dtNode* startNode = m_nodePool->getNode(startRef);
 | |
| 	dtVcopy(startNode->pos, centerPos);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->cost = 0;
 | |
| 	startNode->total = 0;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_OPEN;
 | |
| 	m_openList->push(startNode);
 | |
| 	
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 
 | |
| 	int n = 0;
 | |
| 	
 | |
| 	while (!m_openList->empty())
 | |
| 	{
 | |
| 		dtNode* bestNode = m_openList->pop();
 | |
| 		bestNode->flags &= ~DT_NODE_OPEN;
 | |
| 		bestNode->flags |= DT_NODE_CLOSED;
 | |
| 		
 | |
| 		// Get poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef bestRef = bestNode->id;
 | |
| 		const dtMeshTile* bestTile = 0;
 | |
| 		const dtPoly* bestPoly = 0;
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
 | |
| 		
 | |
| 		// Get parent poly and tile.
 | |
| 		dtPolyRef parentRef = 0;
 | |
| 		const dtMeshTile* parentTile = 0;
 | |
| 		const dtPoly* parentPoly = 0;
 | |
| 		if (bestNode->pidx)
 | |
| 			parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
 | |
| 		if (parentRef)
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
 | |
| 
 | |
| 		if (n < maxResult)
 | |
| 		{
 | |
| 			if (resultRef)
 | |
| 				resultRef[n] = bestRef;
 | |
| 			if (resultParent)
 | |
| 				resultParent[n] = parentRef;
 | |
| 			if (resultCost)
 | |
| 				resultCost[n] = bestNode->total;
 | |
| 
 | |
| 			++n;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			status |= DT_BUFFER_TOO_SMALL;
 | |
| 		}
 | |
| 		
 | |
| 		for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
 | |
| 		{
 | |
| 			const dtLink* link = &bestTile->links[i];
 | |
| 			dtPolyRef neighbourRef = link->ref;
 | |
| 			// Skip invalid neighbours and do not follow back to parent.
 | |
| 			if (!neighbourRef || neighbourRef == parentRef)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Expand to neighbour
 | |
| 			const dtMeshTile* neighbourTile = 0;
 | |
| 			const dtPoly* neighbourPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
 | |
| 			
 | |
| 			// Do not advance if the polygon is excluded by the filter.
 | |
| 			if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
 | |
| 				continue;
 | |
| 			
 | |
| 			// Find edge and calc distance to the edge.
 | |
| 			float va[3], vb[3];
 | |
| 			if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
 | |
| 				continue;
 | |
| 			
 | |
| 			// If the poly is not touching the edge to the next polygon, skip the connection it.
 | |
| 			float tmin, tmax;
 | |
| 			int segMin, segMax;
 | |
| 			if (!dtIntersectSegmentPoly2D(va, vb, verts, nverts, tmin, tmax, segMin, segMax))
 | |
| 				continue;
 | |
| 			if (tmin > 1.0f || tmax < 0.0f)
 | |
| 				continue;
 | |
| 			
 | |
| 			dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
 | |
| 			if (!neighbourNode)
 | |
| 			{
 | |
| 				status |= DT_OUT_OF_NODES;
 | |
| 				continue;
 | |
| 			}
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_CLOSED)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Cost
 | |
| 			if (neighbourNode->flags == 0)
 | |
| 				dtVlerp(neighbourNode->pos, va, vb, 0.5f);
 | |
| 			
 | |
| 			float cost = filter->getCost(
 | |
| 				bestNode->pos, neighbourNode->pos,
 | |
| 				parentRef, parentTile, parentPoly,
 | |
| 				bestRef, bestTile, bestPoly,
 | |
| 				neighbourRef, neighbourTile, neighbourPoly);
 | |
| 
 | |
| 			const float total = bestNode->total + cost;
 | |
| 			
 | |
| 			// The node is already in open list and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			
 | |
| 			neighbourNode->id = neighbourRef;
 | |
| 			neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
 | |
| 			neighbourNode->total = total;
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_OPEN)
 | |
| 			{
 | |
| 				m_openList->modify(neighbourNode);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				neighbourNode->flags = DT_NODE_OPEN;
 | |
| 				m_openList->push(neighbourNode);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	*resultCount = n;
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| dtStatus dtNavMeshQuery::getPathFromDijkstraSearch(dtPolyRef endRef, dtPolyRef* path, int* pathCount, int maxPath) const
 | |
| {
 | |
| 	if (!m_nav->isValidPolyRef(endRef) || !path || !pathCount || maxPath < 0)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*pathCount = 0;
 | |
| 
 | |
| 	dtNode* endNode;
 | |
| 	if (m_nodePool->findNodes(endRef, &endNode, 1) != 1 ||
 | |
| 		(endNode->flags & DT_NODE_CLOSED) == 0)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	return getPathToNode(endNode, path, pathCount, maxPath);
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// This method is optimized for a small search radius and small number of result 
 | |
| /// polygons.
 | |
| ///
 | |
| /// Candidate polygons are found by searching the navigation graph beginning at 
 | |
| /// the start polygon.
 | |
| ///
 | |
| /// The same intersection test restrictions that apply to the findPolysAroundCircle 
 | |
| /// mehtod applies to this method.
 | |
| ///
 | |
| /// The value of the center point is used as the start point for cost calculations. 
 | |
| /// It is not projected onto the surface of the mesh, so its y-value will effect 
 | |
| /// the costs.
 | |
| /// 
 | |
| /// Intersection tests occur in 2D. All polygons and the search circle are 
 | |
| /// projected onto the xz-plane. So the y-value of the center point does not 
 | |
| /// effect intersection tests.
 | |
| /// 
 | |
| /// If the result arrays are is too small to hold the entire result set, they will 
 | |
| /// be filled to capacity.
 | |
| /// 
 | |
| dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius,
 | |
| 												const dtQueryFilter* filter,
 | |
| 												dtPolyRef* resultRef, dtPolyRef* resultParent,
 | |
| 												int* resultCount, const int maxResult) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_tinyNodePool);
 | |
| 
 | |
| 	if (!resultCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	*resultCount = 0;
 | |
| 
 | |
| 	if (!m_nav->isValidPolyRef(startRef) ||
 | |
| 		!centerPos || !dtVisfinite(centerPos) ||
 | |
| 		radius < 0 || !dtMathIsfinite(radius) ||
 | |
| 		!filter || maxResult < 0)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	static const int MAX_STACK = 48;
 | |
| 	dtNode* stack[MAX_STACK];
 | |
| 	int nstack = 0;
 | |
| 	
 | |
| 	m_tinyNodePool->clear();
 | |
| 	
 | |
| 	dtNode* startNode = m_tinyNodePool->getNode(startRef);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_CLOSED;
 | |
| 	stack[nstack++] = startNode;
 | |
| 	
 | |
| 	const float radiusSqr = dtSqr(radius);
 | |
| 	
 | |
| 	float pa[DT_VERTS_PER_POLYGON*3];
 | |
| 	float pb[DT_VERTS_PER_POLYGON*3];
 | |
| 	
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 	
 | |
| 	int n = 0;
 | |
| 	if (n < maxResult)
 | |
| 	{
 | |
| 		resultRef[n] = startNode->id;
 | |
| 		if (resultParent)
 | |
| 			resultParent[n] = 0;
 | |
| 		++n;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		status |= DT_BUFFER_TOO_SMALL;
 | |
| 	}
 | |
| 	
 | |
| 	while (nstack)
 | |
| 	{
 | |
| 		// Pop front.
 | |
| 		dtNode* curNode = stack[0];
 | |
| 		for (int i = 0; i < nstack-1; ++i)
 | |
| 			stack[i] = stack[i+1];
 | |
| 		nstack--;
 | |
| 		
 | |
| 		// Get poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef curRef = curNode->id;
 | |
| 		const dtMeshTile* curTile = 0;
 | |
| 		const dtPoly* curPoly = 0;
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly);
 | |
| 		
 | |
| 		for (unsigned int i = curPoly->firstLink; i != DT_NULL_LINK; i = curTile->links[i].next)
 | |
| 		{
 | |
| 			const dtLink* link = &curTile->links[i];
 | |
| 			dtPolyRef neighbourRef = link->ref;
 | |
| 			// Skip invalid neighbours.
 | |
| 			if (!neighbourRef)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Skip if cannot alloca more nodes.
 | |
| 			dtNode* neighbourNode = m_tinyNodePool->getNode(neighbourRef);
 | |
| 			if (!neighbourNode)
 | |
| 				continue;
 | |
| 			// Skip visited.
 | |
| 			if (neighbourNode->flags & DT_NODE_CLOSED)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Expand to neighbour
 | |
| 			const dtMeshTile* neighbourTile = 0;
 | |
| 			const dtPoly* neighbourPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
 | |
| 			
 | |
| 			// Skip off-mesh connections.
 | |
| 			if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Do not advance if the polygon is excluded by the filter.
 | |
| 			if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
 | |
| 				continue;
 | |
| 			
 | |
| 			// Find edge and calc distance to the edge.
 | |
| 			float va[3], vb[3];
 | |
| 			if (!getPortalPoints(curRef, curPoly, curTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
 | |
| 				continue;
 | |
| 			
 | |
| 			// If the circle is not touching the next polygon, skip it.
 | |
| 			float tseg;
 | |
| 			float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
 | |
| 			if (distSqr > radiusSqr)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Mark node visited, this is done before the overlap test so that
 | |
| 			// we will not visit the poly again if the test fails.
 | |
| 			neighbourNode->flags |= DT_NODE_CLOSED;
 | |
| 			neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode);
 | |
| 			
 | |
| 			// Check that the polygon does not collide with existing polygons.
 | |
| 			
 | |
| 			// Collect vertices of the neighbour poly.
 | |
| 			const int npa = neighbourPoly->vertCount;
 | |
| 			for (int k = 0; k < npa; ++k)
 | |
| 				dtVcopy(&pa[k*3], &neighbourTile->verts[neighbourPoly->verts[k]*3]);
 | |
| 			
 | |
| 			bool overlap = false;
 | |
| 			for (int j = 0; j < n; ++j)
 | |
| 			{
 | |
| 				dtPolyRef pastRef = resultRef[j];
 | |
| 				
 | |
| 				// Connected polys do not overlap.
 | |
| 				bool connected = false;
 | |
| 				for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next)
 | |
| 				{
 | |
| 					if (curTile->links[k].ref == pastRef)
 | |
| 					{
 | |
| 						connected = true;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				if (connected)
 | |
| 					continue;
 | |
| 				
 | |
| 				// Potentially overlapping.
 | |
| 				const dtMeshTile* pastTile = 0;
 | |
| 				const dtPoly* pastPoly = 0;
 | |
| 				m_nav->getTileAndPolyByRefUnsafe(pastRef, &pastTile, &pastPoly);
 | |
| 				
 | |
| 				// Get vertices and test overlap
 | |
| 				const int npb = pastPoly->vertCount;
 | |
| 				for (int k = 0; k < npb; ++k)
 | |
| 					dtVcopy(&pb[k*3], &pastTile->verts[pastPoly->verts[k]*3]);
 | |
| 				
 | |
| 				if (dtOverlapPolyPoly2D(pa,npa, pb,npb))
 | |
| 				{
 | |
| 					overlap = true;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (overlap)
 | |
| 				continue;
 | |
| 			
 | |
| 			// This poly is fine, store and advance to the poly.
 | |
| 			if (n < maxResult)
 | |
| 			{
 | |
| 				resultRef[n] = neighbourRef;
 | |
| 				if (resultParent)
 | |
| 					resultParent[n] = curRef;
 | |
| 				++n;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				status |= DT_BUFFER_TOO_SMALL;
 | |
| 			}
 | |
| 			
 | |
| 			if (nstack < MAX_STACK)
 | |
| 			{
 | |
| 				stack[nstack++] = neighbourNode;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	*resultCount = n;
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct dtSegInterval
 | |
| {
 | |
| 	dtPolyRef ref;
 | |
| 	short tmin, tmax;
 | |
| };
 | |
| 
 | |
| static void insertInterval(dtSegInterval* ints, int& nints, const int maxInts,
 | |
| 						   const short tmin, const short tmax, const dtPolyRef ref)
 | |
| {
 | |
| 	if (nints+1 > maxInts) return;
 | |
| 	// Find insertion point.
 | |
| 	int idx = 0;
 | |
| 	while (idx < nints)
 | |
| 	{
 | |
| 		if (tmax <= ints[idx].tmin)
 | |
| 			break;
 | |
| 		idx++;
 | |
| 	}
 | |
| 	// Move current results.
 | |
| 	if (nints-idx)
 | |
| 		memmove(ints+idx+1, ints+idx, sizeof(dtSegInterval)*(nints-idx));
 | |
| 	// Store
 | |
| 	ints[idx].ref = ref;
 | |
| 	ints[idx].tmin = tmin;
 | |
| 	ints[idx].tmax = tmax;
 | |
| 	nints++;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// If the @p segmentRefs parameter is provided, then all polygon segments will be returned. 
 | |
| /// Otherwise only the wall segments are returned.
 | |
| /// 
 | |
| /// A segment that is normally a portal will be included in the result set as a 
 | |
| /// wall if the @p filter results in the neighbor polygon becoomming impassable.
 | |
| /// 
 | |
| /// The @p segmentVerts and @p segmentRefs buffers should normally be sized for the 
 | |
| /// maximum segments per polygon of the source navigation mesh.
 | |
| /// 
 | |
| dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter,
 | |
| 											 float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount,
 | |
| 											 const int maxSegments) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 
 | |
| 	if (!segmentCount)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	*segmentCount = 0;
 | |
| 
 | |
| 	const dtMeshTile* tile = 0;
 | |
| 	const dtPoly* poly = 0;
 | |
| 	if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 
 | |
| 	if (!filter || !segmentVerts || maxSegments < 0)
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	
 | |
| 	int n = 0;
 | |
| 	static const int MAX_INTERVAL = 16;
 | |
| 	dtSegInterval ints[MAX_INTERVAL];
 | |
| 	int nints;
 | |
| 	
 | |
| 	const bool storePortals = segmentRefs != 0;
 | |
| 	
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 	
 | |
| 	for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++)
 | |
| 	{
 | |
| 		// Skip non-solid edges.
 | |
| 		nints = 0;
 | |
| 		if (poly->neis[j] & DT_EXT_LINK)
 | |
| 		{
 | |
| 			// Tile border.
 | |
| 			for (unsigned int k = poly->firstLink; k != DT_NULL_LINK; k = tile->links[k].next)
 | |
| 			{
 | |
| 				const dtLink* link = &tile->links[k];
 | |
| 				if (link->edge == j)
 | |
| 				{
 | |
| 					if (link->ref != 0)
 | |
| 					{
 | |
| 						const dtMeshTile* neiTile = 0;
 | |
| 						const dtPoly* neiPoly = 0;
 | |
| 						m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
 | |
| 						if (filter->passFilter(link->ref, neiTile, neiPoly))
 | |
| 						{
 | |
| 							insertInterval(ints, nints, MAX_INTERVAL, link->bmin, link->bmax, link->ref);
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// Internal edge
 | |
| 			dtPolyRef neiRef = 0;
 | |
| 			if (poly->neis[j])
 | |
| 			{
 | |
| 				const unsigned int idx = (unsigned int)(poly->neis[j]-1);
 | |
| 				neiRef = m_nav->getPolyRefBase(tile) | idx;
 | |
| 				if (!filter->passFilter(neiRef, tile, &tile->polys[idx]))
 | |
| 					neiRef = 0;
 | |
| 			}
 | |
| 
 | |
| 			// If the edge leads to another polygon and portals are not stored, skip.
 | |
| 			if (neiRef != 0 && !storePortals)
 | |
| 				continue;
 | |
| 			
 | |
| 			if (n < maxSegments)
 | |
| 			{
 | |
| 				const float* vj = &tile->verts[poly->verts[j]*3];
 | |
| 				const float* vi = &tile->verts[poly->verts[i]*3];
 | |
| 				float* seg = &segmentVerts[n*6];
 | |
| 				dtVcopy(seg+0, vj);
 | |
| 				dtVcopy(seg+3, vi);
 | |
| 				if (segmentRefs)
 | |
| 					segmentRefs[n] = neiRef;
 | |
| 				n++;
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				status |= DT_BUFFER_TOO_SMALL;
 | |
| 			}
 | |
| 			
 | |
| 			continue;
 | |
| 		}
 | |
| 		
 | |
| 		// Add sentinels
 | |
| 		insertInterval(ints, nints, MAX_INTERVAL, -1, 0, 0);
 | |
| 		insertInterval(ints, nints, MAX_INTERVAL, 255, 256, 0);
 | |
| 		
 | |
| 		// Store segments.
 | |
| 		const float* vj = &tile->verts[poly->verts[j]*3];
 | |
| 		const float* vi = &tile->verts[poly->verts[i]*3];
 | |
| 		for (int k = 1; k < nints; ++k)
 | |
| 		{
 | |
| 			// Portal segment.
 | |
| 			if (storePortals && ints[k].ref)
 | |
| 			{
 | |
| 				const float tmin = ints[k].tmin/255.0f; 
 | |
| 				const float tmax = ints[k].tmax/255.0f; 
 | |
| 				if (n < maxSegments)
 | |
| 				{
 | |
| 					float* seg = &segmentVerts[n*6];
 | |
| 					dtVlerp(seg+0, vj,vi, tmin);
 | |
| 					dtVlerp(seg+3, vj,vi, tmax);
 | |
| 					if (segmentRefs)
 | |
| 						segmentRefs[n] = ints[k].ref;
 | |
| 					n++;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					status |= DT_BUFFER_TOO_SMALL;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Wall segment.
 | |
| 			const int imin = ints[k-1].tmax;
 | |
| 			const int imax = ints[k].tmin;
 | |
| 			if (imin != imax)
 | |
| 			{
 | |
| 				const float tmin = imin/255.0f; 
 | |
| 				const float tmax = imax/255.0f; 
 | |
| 				if (n < maxSegments)
 | |
| 				{
 | |
| 					float* seg = &segmentVerts[n*6];
 | |
| 					dtVlerp(seg+0, vj,vi, tmin);
 | |
| 					dtVlerp(seg+3, vj,vi, tmax);
 | |
| 					if (segmentRefs)
 | |
| 						segmentRefs[n] = 0;
 | |
| 					n++;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					status |= DT_BUFFER_TOO_SMALL;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	*segmentCount = n;
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// @p hitPos is not adjusted using the height detail data.
 | |
| ///
 | |
| /// @p hitDist will equal the search radius if there is no wall within the 
 | |
| /// radius. In this case the values of @p hitPos and @p hitNormal are
 | |
| /// undefined.
 | |
| ///
 | |
| /// The normal will become unpredicable if @p hitDist is a very small number.
 | |
| ///
 | |
| dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius,
 | |
| 											const dtQueryFilter* filter,
 | |
| 											float* hitDist, float* hitPos, float* hitNormal) const
 | |
| {
 | |
| 	dtAssert(m_nav);
 | |
| 	dtAssert(m_nodePool);
 | |
| 	dtAssert(m_openList);
 | |
| 	
 | |
| 	// Validate input
 | |
| 	if (!m_nav->isValidPolyRef(startRef) ||
 | |
| 		!centerPos || !dtVisfinite(centerPos) ||
 | |
| 		maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
 | |
| 		!filter || !hitDist || !hitPos || !hitNormal)
 | |
| 	{
 | |
| 		return DT_FAILURE | DT_INVALID_PARAM;
 | |
| 	}
 | |
| 	
 | |
| 	m_nodePool->clear();
 | |
| 	m_openList->clear();
 | |
| 	
 | |
| 	dtNode* startNode = m_nodePool->getNode(startRef);
 | |
| 	dtVcopy(startNode->pos, centerPos);
 | |
| 	startNode->pidx = 0;
 | |
| 	startNode->cost = 0;
 | |
| 	startNode->total = 0;
 | |
| 	startNode->id = startRef;
 | |
| 	startNode->flags = DT_NODE_OPEN;
 | |
| 	m_openList->push(startNode);
 | |
| 	
 | |
| 	float radiusSqr = dtSqr(maxRadius);
 | |
| 	
 | |
| 	dtStatus status = DT_SUCCESS;
 | |
| 	
 | |
| 	while (!m_openList->empty())
 | |
| 	{
 | |
| 		dtNode* bestNode = m_openList->pop();
 | |
| 		bestNode->flags &= ~DT_NODE_OPEN;
 | |
| 		bestNode->flags |= DT_NODE_CLOSED;
 | |
| 		
 | |
| 		// Get poly and tile.
 | |
| 		// The API input has been cheked already, skip checking internal data.
 | |
| 		const dtPolyRef bestRef = bestNode->id;
 | |
| 		const dtMeshTile* bestTile = 0;
 | |
| 		const dtPoly* bestPoly = 0;
 | |
| 		m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
 | |
| 		
 | |
| 		// Get parent poly and tile.
 | |
| 		dtPolyRef parentRef = 0;
 | |
| 		const dtMeshTile* parentTile = 0;
 | |
| 		const dtPoly* parentPoly = 0;
 | |
| 		if (bestNode->pidx)
 | |
| 			parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
 | |
| 		if (parentRef)
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
 | |
| 		
 | |
| 		// Hit test walls.
 | |
| 		for (int i = 0, j = (int)bestPoly->vertCount-1; i < (int)bestPoly->vertCount; j = i++)
 | |
| 		{
 | |
| 			// Skip non-solid edges.
 | |
| 			if (bestPoly->neis[j] & DT_EXT_LINK)
 | |
| 			{
 | |
| 				// Tile border.
 | |
| 				bool solid = true;
 | |
| 				for (unsigned int k = bestPoly->firstLink; k != DT_NULL_LINK; k = bestTile->links[k].next)
 | |
| 				{
 | |
| 					const dtLink* link = &bestTile->links[k];
 | |
| 					if (link->edge == j)
 | |
| 					{
 | |
| 						if (link->ref != 0)
 | |
| 						{
 | |
| 							const dtMeshTile* neiTile = 0;
 | |
| 							const dtPoly* neiPoly = 0;
 | |
| 							m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
 | |
| 							if (filter->passFilter(link->ref, neiTile, neiPoly))
 | |
| 								solid = false;
 | |
| 						}
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				if (!solid) continue;
 | |
| 			}
 | |
| 			else if (bestPoly->neis[j])
 | |
| 			{
 | |
| 				// Internal edge
 | |
| 				const unsigned int idx = (unsigned int)(bestPoly->neis[j]-1);
 | |
| 				const dtPolyRef ref = m_nav->getPolyRefBase(bestTile) | idx;
 | |
| 				if (filter->passFilter(ref, bestTile, &bestTile->polys[idx]))
 | |
| 					continue;
 | |
| 			}
 | |
| 			
 | |
| 			// Calc distance to the edge.
 | |
| 			const float* vj = &bestTile->verts[bestPoly->verts[j]*3];
 | |
| 			const float* vi = &bestTile->verts[bestPoly->verts[i]*3];
 | |
| 			float tseg;
 | |
| 			float distSqr = dtDistancePtSegSqr2D(centerPos, vj, vi, tseg);
 | |
| 			
 | |
| 			// Edge is too far, skip.
 | |
| 			if (distSqr > radiusSqr)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Hit wall, update radius.
 | |
| 			radiusSqr = distSqr;
 | |
| 			// Calculate hit pos.
 | |
| 			hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
 | |
| 			hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
 | |
| 			hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
 | |
| 		}
 | |
| 		
 | |
| 		for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
 | |
| 		{
 | |
| 			const dtLink* link = &bestTile->links[i];
 | |
| 			dtPolyRef neighbourRef = link->ref;
 | |
| 			// Skip invalid neighbours and do not follow back to parent.
 | |
| 			if (!neighbourRef || neighbourRef == parentRef)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Expand to neighbour.
 | |
| 			const dtMeshTile* neighbourTile = 0;
 | |
| 			const dtPoly* neighbourPoly = 0;
 | |
| 			m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
 | |
| 			
 | |
| 			// Skip off-mesh connections.
 | |
| 			if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Calc distance to the edge.
 | |
| 			const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3];
 | |
| 			const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3];
 | |
| 			float tseg;
 | |
| 			float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
 | |
| 			
 | |
| 			// If the circle is not touching the next polygon, skip it.
 | |
| 			if (distSqr > radiusSqr)
 | |
| 				continue;
 | |
| 			
 | |
| 			if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
 | |
| 				continue;
 | |
| 
 | |
| 			dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
 | |
| 			if (!neighbourNode)
 | |
| 			{
 | |
| 				status |= DT_OUT_OF_NODES;
 | |
| 				continue;
 | |
| 			}
 | |
| 			
 | |
| 			if (neighbourNode->flags & DT_NODE_CLOSED)
 | |
| 				continue;
 | |
| 			
 | |
| 			// Cost
 | |
| 			if (neighbourNode->flags == 0)
 | |
| 			{
 | |
| 				getEdgeMidPoint(bestRef, bestPoly, bestTile,
 | |
| 								neighbourRef, neighbourPoly, neighbourTile, neighbourNode->pos);
 | |
| 			}
 | |
| 			
 | |
| 			const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos);
 | |
| 			
 | |
| 			// The node is already in open list and the new result is worse, skip.
 | |
| 			if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
 | |
| 				continue;
 | |
| 			
 | |
| 			neighbourNode->id = neighbourRef;
 | |
| 			neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
 | |
| 			neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
 | |
| 			neighbourNode->total = total;
 | |
| 				
 | |
| 			if (neighbourNode->flags & DT_NODE_OPEN)
 | |
| 			{
 | |
| 				m_openList->modify(neighbourNode);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				neighbourNode->flags |= DT_NODE_OPEN;
 | |
| 				m_openList->push(neighbourNode);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Calc hit normal.
 | |
| 	dtVsub(hitNormal, centerPos, hitPos);
 | |
| 	dtVnormalize(hitNormal);
 | |
| 	
 | |
| 	*hitDist = dtMathSqrtf(radiusSqr);
 | |
| 	
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| bool dtNavMeshQuery::isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const
 | |
| {
 | |
| 	const dtMeshTile* tile = 0;
 | |
| 	const dtPoly* poly = 0;
 | |
| 	dtStatus status = m_nav->getTileAndPolyByRef(ref, &tile, &poly);
 | |
| 	// If cannot get polygon, assume it does not exists and boundary is invalid.
 | |
| 	if (dtStatusFailed(status))
 | |
| 		return false;
 | |
| 	// If cannot pass filter, assume flags has changed and boundary is invalid.
 | |
| 	if (!filter->passFilter(ref, tile, poly))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /// @par
 | |
| ///
 | |
| /// The closed list is the list of polygons that were fully evaluated during 
 | |
| /// the last navigation graph search. (A* or Dijkstra)
 | |
| /// 
 | |
| bool dtNavMeshQuery::isInClosedList(dtPolyRef ref) const
 | |
| {
 | |
| 	if (!m_nodePool) return false;
 | |
| 	
 | |
| 	dtNode* nodes[DT_MAX_STATES_PER_NODE];
 | |
| 	int n= m_nodePool->findNodes(ref, nodes, DT_MAX_STATES_PER_NODE);
 | |
| 
 | |
| 	for (int i=0; i<n; i++)
 | |
| 	{
 | |
| 		if (nodes[i]->flags & DT_NODE_CLOSED)
 | |
| 			return true;
 | |
| 	}		
 | |
| 
 | |
| 	return false;
 | |
| }
 |