forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			823 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			823 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
///btDbvtBroadphase implementation by Nathanael Presson
 | 
						|
 | 
						|
#include "btDbvtBroadphase.h"
 | 
						|
#include "LinearMath/btThreads.h"
 | 
						|
 | 
						|
//
 | 
						|
// Profiling
 | 
						|
//
 | 
						|
 | 
						|
#if DBVT_BP_PROFILE||DBVT_BP_ENABLE_BENCHMARK
 | 
						|
#include <stdio.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#if DBVT_BP_PROFILE
 | 
						|
struct	ProfileScope
 | 
						|
{
 | 
						|
	__forceinline ProfileScope(btClock& clock,unsigned long& value) :
 | 
						|
	m_clock(&clock),m_value(&value),m_base(clock.getTimeMicroseconds())
 | 
						|
	{
 | 
						|
	}
 | 
						|
	__forceinline ~ProfileScope()
 | 
						|
	{
 | 
						|
		(*m_value)+=m_clock->getTimeMicroseconds()-m_base;
 | 
						|
	}
 | 
						|
	btClock*		m_clock;
 | 
						|
	unsigned long*	m_value;
 | 
						|
	unsigned long	m_base;
 | 
						|
};
 | 
						|
#define	SPC(_value_)	ProfileScope	spc_scope(m_clock,_value_)
 | 
						|
#else
 | 
						|
#define	SPC(_value_)
 | 
						|
#endif
 | 
						|
 | 
						|
//
 | 
						|
// Helpers
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
template <typename T>
 | 
						|
static inline void	listappend(T* item,T*& list)
 | 
						|
{
 | 
						|
	item->links[0]=0;
 | 
						|
	item->links[1]=list;
 | 
						|
	if(list) list->links[0]=item;
 | 
						|
	list=item;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
template <typename T>
 | 
						|
static inline void	listremove(T* item,T*& list)
 | 
						|
{
 | 
						|
	if(item->links[0]) item->links[0]->links[1]=item->links[1]; else list=item->links[1];
 | 
						|
	if(item->links[1]) item->links[1]->links[0]=item->links[0];
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
template <typename T>
 | 
						|
static inline int	listcount(T* root)
 | 
						|
{
 | 
						|
	int	n=0;
 | 
						|
	while(root) { ++n;root=root->links[1]; }
 | 
						|
	return(n);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
template <typename T>
 | 
						|
static inline void	clear(T& value)
 | 
						|
{
 | 
						|
	static const struct ZeroDummy : T {} zerodummy;
 | 
						|
	value=zerodummy;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Colliders
 | 
						|
//
 | 
						|
 | 
						|
/* Tree collider	*/ 
 | 
						|
struct	btDbvtTreeCollider : btDbvt::ICollide
 | 
						|
{
 | 
						|
	btDbvtBroadphase*	pbp;
 | 
						|
	btDbvtProxy*		proxy;
 | 
						|
	btDbvtTreeCollider(btDbvtBroadphase* p) : pbp(p) {}
 | 
						|
	void	Process(const btDbvtNode* na,const btDbvtNode* nb)
 | 
						|
	{
 | 
						|
		if(na!=nb)
 | 
						|
		{
 | 
						|
			btDbvtProxy*	pa=(btDbvtProxy*)na->data;
 | 
						|
			btDbvtProxy*	pb=(btDbvtProxy*)nb->data;
 | 
						|
#if DBVT_BP_SORTPAIRS
 | 
						|
			if(pa->m_uniqueId>pb->m_uniqueId) 
 | 
						|
				btSwap(pa,pb);
 | 
						|
#endif
 | 
						|
			pbp->m_paircache->addOverlappingPair(pa,pb);
 | 
						|
			++pbp->m_newpairs;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	void	Process(const btDbvtNode* n)
 | 
						|
	{
 | 
						|
		Process(n,proxy->leaf);
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
//
 | 
						|
// btDbvtBroadphase
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
btDbvtBroadphase::btDbvtBroadphase(btOverlappingPairCache* paircache)
 | 
						|
{
 | 
						|
	m_deferedcollide	=	false;
 | 
						|
	m_needcleanup		=	true;
 | 
						|
	m_releasepaircache	=	(paircache!=0)?false:true;
 | 
						|
	m_prediction		=	0;
 | 
						|
	m_stageCurrent		=	0;
 | 
						|
	m_fixedleft			=	0;
 | 
						|
	m_fupdates			=	1;
 | 
						|
	m_dupdates			=	0;
 | 
						|
	m_cupdates			=	10;
 | 
						|
	m_newpairs			=	1;
 | 
						|
	m_updates_call		=	0;
 | 
						|
	m_updates_done		=	0;
 | 
						|
	m_updates_ratio		=	0;
 | 
						|
	m_paircache			=	paircache? paircache	: new(btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache();
 | 
						|
	m_gid				=	0;
 | 
						|
	m_pid				=	0;
 | 
						|
	m_cid				=	0;
 | 
						|
	for(int i=0;i<=STAGECOUNT;++i)
 | 
						|
	{
 | 
						|
		m_stageRoots[i]=0;
 | 
						|
	}
 | 
						|
#if BT_THREADSAFE
 | 
						|
    m_rayTestStacks.resize(BT_MAX_THREAD_COUNT);
 | 
						|
#else
 | 
						|
    m_rayTestStacks.resize(1);
 | 
						|
#endif
 | 
						|
#if DBVT_BP_PROFILE
 | 
						|
	clear(m_profiling);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
btDbvtBroadphase::~btDbvtBroadphase()
 | 
						|
{
 | 
						|
	if(m_releasepaircache) 
 | 
						|
	{
 | 
						|
		m_paircache->~btOverlappingPairCache();
 | 
						|
		btAlignedFree(m_paircache);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
btBroadphaseProxy*				btDbvtBroadphase::createProxy(	const btVector3& aabbMin,
 | 
						|
															  const btVector3& aabbMax,
 | 
						|
															  int /*shapeType*/,
 | 
						|
															  void* userPtr,
 | 
						|
															  int collisionFilterGroup,
 | 
						|
															  int collisionFilterMask,
 | 
						|
															  btDispatcher* /*dispatcher*/)
 | 
						|
{
 | 
						|
	btDbvtProxy*		proxy=new(btAlignedAlloc(sizeof(btDbvtProxy),16)) btDbvtProxy(	aabbMin,aabbMax,userPtr,
 | 
						|
		collisionFilterGroup,
 | 
						|
		collisionFilterMask);
 | 
						|
 | 
						|
	btDbvtAabbMm aabb = btDbvtVolume::FromMM(aabbMin,aabbMax);
 | 
						|
 | 
						|
	//bproxy->aabb			=	btDbvtVolume::FromMM(aabbMin,aabbMax);
 | 
						|
	proxy->stage		=	m_stageCurrent;
 | 
						|
	proxy->m_uniqueId	=	++m_gid;
 | 
						|
	proxy->leaf			=	m_sets[0].insert(aabb,proxy);
 | 
						|
	listappend(proxy,m_stageRoots[m_stageCurrent]);
 | 
						|
	if(!m_deferedcollide)
 | 
						|
	{
 | 
						|
		btDbvtTreeCollider	collider(this);
 | 
						|
		collider.proxy=proxy;
 | 
						|
		m_sets[0].collideTV(m_sets[0].m_root,aabb,collider);
 | 
						|
		m_sets[1].collideTV(m_sets[1].m_root,aabb,collider);
 | 
						|
	}
 | 
						|
	return(proxy);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::destroyProxy(	btBroadphaseProxy* absproxy,
 | 
						|
															   btDispatcher* dispatcher)
 | 
						|
{
 | 
						|
	btDbvtProxy*	proxy=(btDbvtProxy*)absproxy;
 | 
						|
	if(proxy->stage==STAGECOUNT)
 | 
						|
		m_sets[1].remove(proxy->leaf);
 | 
						|
	else
 | 
						|
		m_sets[0].remove(proxy->leaf);
 | 
						|
	listremove(proxy,m_stageRoots[proxy->stage]);
 | 
						|
	m_paircache->removeOverlappingPairsContainingProxy(proxy,dispatcher);
 | 
						|
	btAlignedFree(proxy);
 | 
						|
	m_needcleanup=true;
 | 
						|
}
 | 
						|
 | 
						|
void	btDbvtBroadphase::getAabb(btBroadphaseProxy* absproxy,btVector3& aabbMin, btVector3& aabbMax ) const
 | 
						|
{
 | 
						|
	btDbvtProxy*						proxy=(btDbvtProxy*)absproxy;
 | 
						|
	aabbMin = proxy->m_aabbMin;
 | 
						|
	aabbMax = proxy->m_aabbMax;
 | 
						|
}
 | 
						|
 | 
						|
struct	BroadphaseRayTester : btDbvt::ICollide
 | 
						|
{
 | 
						|
	btBroadphaseRayCallback& m_rayCallback;
 | 
						|
	BroadphaseRayTester(btBroadphaseRayCallback& orgCallback)
 | 
						|
		:m_rayCallback(orgCallback)
 | 
						|
	{
 | 
						|
	}
 | 
						|
	void					Process(const btDbvtNode* leaf)
 | 
						|
	{
 | 
						|
		btDbvtProxy*	proxy=(btDbvtProxy*)leaf->data;
 | 
						|
		m_rayCallback.process(proxy);
 | 
						|
	}
 | 
						|
};	
 | 
						|
 | 
						|
void	btDbvtBroadphase::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback,const btVector3& aabbMin,const btVector3& aabbMax)
 | 
						|
{
 | 
						|
	BroadphaseRayTester callback(rayCallback);
 | 
						|
    btAlignedObjectArray<const btDbvtNode*>* stack = &m_rayTestStacks[0];
 | 
						|
#if BT_THREADSAFE
 | 
						|
    // for this function to be threadsafe, each thread must have a separate copy
 | 
						|
    // of this stack.  This could be thread-local static to avoid dynamic allocations,
 | 
						|
    // instead of just a local.
 | 
						|
    int threadIndex = btGetCurrentThreadIndex();
 | 
						|
    btAlignedObjectArray<const btDbvtNode*> localStack;
 | 
						|
    if (threadIndex < m_rayTestStacks.size())
 | 
						|
    {
 | 
						|
        // use per-thread preallocated stack if possible to avoid dynamic allocations
 | 
						|
        stack = &m_rayTestStacks[threadIndex];
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        stack = &localStack;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
	m_sets[0].rayTestInternal(	m_sets[0].m_root,
 | 
						|
		rayFrom,
 | 
						|
		rayTo,
 | 
						|
		rayCallback.m_rayDirectionInverse,
 | 
						|
		rayCallback.m_signs,
 | 
						|
		rayCallback.m_lambda_max,
 | 
						|
		aabbMin,
 | 
						|
		aabbMax,
 | 
						|
        *stack,
 | 
						|
		callback);
 | 
						|
 | 
						|
	m_sets[1].rayTestInternal(	m_sets[1].m_root,
 | 
						|
		rayFrom,
 | 
						|
		rayTo,
 | 
						|
		rayCallback.m_rayDirectionInverse,
 | 
						|
		rayCallback.m_signs,
 | 
						|
		rayCallback.m_lambda_max,
 | 
						|
		aabbMin,
 | 
						|
		aabbMax,
 | 
						|
        *stack,
 | 
						|
		callback);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
struct	BroadphaseAabbTester : btDbvt::ICollide
 | 
						|
{
 | 
						|
	btBroadphaseAabbCallback& m_aabbCallback;
 | 
						|
	BroadphaseAabbTester(btBroadphaseAabbCallback& orgCallback)
 | 
						|
		:m_aabbCallback(orgCallback)
 | 
						|
	{
 | 
						|
	}
 | 
						|
	void					Process(const btDbvtNode* leaf)
 | 
						|
	{
 | 
						|
		btDbvtProxy*	proxy=(btDbvtProxy*)leaf->data;
 | 
						|
		m_aabbCallback.process(proxy);
 | 
						|
	}
 | 
						|
};	
 | 
						|
 | 
						|
void	btDbvtBroadphase::aabbTest(const btVector3& aabbMin,const btVector3& aabbMax,btBroadphaseAabbCallback& aabbCallback)
 | 
						|
{
 | 
						|
	BroadphaseAabbTester callback(aabbCallback);
 | 
						|
 | 
						|
	const ATTRIBUTE_ALIGNED16(btDbvtVolume)	bounds=btDbvtVolume::FromMM(aabbMin,aabbMax);
 | 
						|
		//process all children, that overlap with  the given AABB bounds
 | 
						|
	m_sets[0].collideTV(m_sets[0].m_root,bounds,callback);
 | 
						|
	m_sets[1].collideTV(m_sets[1].m_root,bounds,callback);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::setAabb(		btBroadphaseProxy* absproxy,
 | 
						|
														  const btVector3& aabbMin,
 | 
						|
														  const btVector3& aabbMax,
 | 
						|
														  btDispatcher* /*dispatcher*/)
 | 
						|
{
 | 
						|
	btDbvtProxy*						proxy=(btDbvtProxy*)absproxy;
 | 
						|
	ATTRIBUTE_ALIGNED16(btDbvtVolume)	aabb=btDbvtVolume::FromMM(aabbMin,aabbMax);
 | 
						|
#if DBVT_BP_PREVENTFALSEUPDATE
 | 
						|
	if(NotEqual(aabb,proxy->leaf->volume))
 | 
						|
#endif
 | 
						|
	{
 | 
						|
		bool	docollide=false;
 | 
						|
		if(proxy->stage==STAGECOUNT)
 | 
						|
		{/* fixed -> dynamic set	*/ 
 | 
						|
			m_sets[1].remove(proxy->leaf);
 | 
						|
			proxy->leaf=m_sets[0].insert(aabb,proxy);
 | 
						|
			docollide=true;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{/* dynamic set				*/ 
 | 
						|
			++m_updates_call;
 | 
						|
			if(Intersect(proxy->leaf->volume,aabb))
 | 
						|
			{/* Moving				*/ 
 | 
						|
 | 
						|
				const btVector3	delta=aabbMin-proxy->m_aabbMin;
 | 
						|
				btVector3		velocity(((proxy->m_aabbMax-proxy->m_aabbMin)/2)*m_prediction);
 | 
						|
				if(delta[0]<0) velocity[0]=-velocity[0];
 | 
						|
				if(delta[1]<0) velocity[1]=-velocity[1];
 | 
						|
				if(delta[2]<0) velocity[2]=-velocity[2];
 | 
						|
				if	(
 | 
						|
#ifdef DBVT_BP_MARGIN				
 | 
						|
					m_sets[0].update(proxy->leaf,aabb,velocity,DBVT_BP_MARGIN)
 | 
						|
#else
 | 
						|
					m_sets[0].update(proxy->leaf,aabb,velocity)
 | 
						|
#endif
 | 
						|
					)
 | 
						|
				{
 | 
						|
					++m_updates_done;
 | 
						|
					docollide=true;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{/* Teleporting			*/ 
 | 
						|
				m_sets[0].update(proxy->leaf,aabb);
 | 
						|
				++m_updates_done;
 | 
						|
				docollide=true;
 | 
						|
			}	
 | 
						|
		}
 | 
						|
		listremove(proxy,m_stageRoots[proxy->stage]);
 | 
						|
		proxy->m_aabbMin = aabbMin;
 | 
						|
		proxy->m_aabbMax = aabbMax;
 | 
						|
		proxy->stage	=	m_stageCurrent;
 | 
						|
		listappend(proxy,m_stageRoots[m_stageCurrent]);
 | 
						|
		if(docollide)
 | 
						|
		{
 | 
						|
			m_needcleanup=true;
 | 
						|
			if(!m_deferedcollide)
 | 
						|
			{
 | 
						|
				btDbvtTreeCollider	collider(this);
 | 
						|
				m_sets[1].collideTTpersistentStack(m_sets[1].m_root,proxy->leaf,collider);
 | 
						|
				m_sets[0].collideTTpersistentStack(m_sets[0].m_root,proxy->leaf,collider);
 | 
						|
			}
 | 
						|
		}	
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::setAabbForceUpdate(		btBroadphaseProxy* absproxy,
 | 
						|
														  const btVector3& aabbMin,
 | 
						|
														  const btVector3& aabbMax,
 | 
						|
														  btDispatcher* /*dispatcher*/)
 | 
						|
{
 | 
						|
	btDbvtProxy*						proxy=(btDbvtProxy*)absproxy;
 | 
						|
	ATTRIBUTE_ALIGNED16(btDbvtVolume)	aabb=btDbvtVolume::FromMM(aabbMin,aabbMax);
 | 
						|
	bool	docollide=false;
 | 
						|
	if(proxy->stage==STAGECOUNT)
 | 
						|
	{/* fixed -> dynamic set	*/ 
 | 
						|
		m_sets[1].remove(proxy->leaf);
 | 
						|
		proxy->leaf=m_sets[0].insert(aabb,proxy);
 | 
						|
		docollide=true;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{/* dynamic set				*/ 
 | 
						|
		++m_updates_call;
 | 
						|
		/* Teleporting			*/ 
 | 
						|
		m_sets[0].update(proxy->leaf,aabb);
 | 
						|
		++m_updates_done;
 | 
						|
		docollide=true;
 | 
						|
	}
 | 
						|
	listremove(proxy,m_stageRoots[proxy->stage]);
 | 
						|
	proxy->m_aabbMin = aabbMin;
 | 
						|
	proxy->m_aabbMax = aabbMax;
 | 
						|
	proxy->stage	=	m_stageCurrent;
 | 
						|
	listappend(proxy,m_stageRoots[m_stageCurrent]);
 | 
						|
	if(docollide)
 | 
						|
	{
 | 
						|
		m_needcleanup=true;
 | 
						|
		if(!m_deferedcollide)
 | 
						|
		{
 | 
						|
			btDbvtTreeCollider	collider(this);
 | 
						|
			m_sets[1].collideTTpersistentStack(m_sets[1].m_root,proxy->leaf,collider);
 | 
						|
			m_sets[0].collideTTpersistentStack(m_sets[0].m_root,proxy->leaf,collider);
 | 
						|
		}
 | 
						|
	}	
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
 | 
						|
{
 | 
						|
	collide(dispatcher);
 | 
						|
#if DBVT_BP_PROFILE
 | 
						|
	if(0==(m_pid%DBVT_BP_PROFILING_RATE))
 | 
						|
	{	
 | 
						|
		printf("fixed(%u) dynamics(%u) pairs(%u)\r\n",m_sets[1].m_leaves,m_sets[0].m_leaves,m_paircache->getNumOverlappingPairs());
 | 
						|
		unsigned int	total=m_profiling.m_total;
 | 
						|
		if(total<=0) total=1;
 | 
						|
		printf("ddcollide: %u%% (%uus)\r\n",(50+m_profiling.m_ddcollide*100)/total,m_profiling.m_ddcollide/DBVT_BP_PROFILING_RATE);
 | 
						|
		printf("fdcollide: %u%% (%uus)\r\n",(50+m_profiling.m_fdcollide*100)/total,m_profiling.m_fdcollide/DBVT_BP_PROFILING_RATE);
 | 
						|
		printf("cleanup:   %u%% (%uus)\r\n",(50+m_profiling.m_cleanup*100)/total,m_profiling.m_cleanup/DBVT_BP_PROFILING_RATE);
 | 
						|
		printf("total:     %uus\r\n",total/DBVT_BP_PROFILING_RATE);
 | 
						|
		const unsigned long	sum=m_profiling.m_ddcollide+
 | 
						|
			m_profiling.m_fdcollide+
 | 
						|
			m_profiling.m_cleanup;
 | 
						|
		printf("leaked: %u%% (%uus)\r\n",100-((50+sum*100)/total),(total-sum)/DBVT_BP_PROFILING_RATE);
 | 
						|
		printf("job counts: %u%%\r\n",(m_profiling.m_jobcount*100)/((m_sets[0].m_leaves+m_sets[1].m_leaves)*DBVT_BP_PROFILING_RATE));
 | 
						|
		clear(m_profiling);
 | 
						|
		m_clock.reset();
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	performDeferredRemoval(dispatcher);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void btDbvtBroadphase::performDeferredRemoval(btDispatcher* dispatcher)
 | 
						|
{
 | 
						|
 | 
						|
	if (m_paircache->hasDeferredRemoval())
 | 
						|
	{
 | 
						|
 | 
						|
		btBroadphasePairArray&	overlappingPairArray = m_paircache->getOverlappingPairArray();
 | 
						|
 | 
						|
		//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
 | 
						|
		overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
 | 
						|
 | 
						|
		int invalidPair = 0;
 | 
						|
 | 
						|
		
 | 
						|
		int i;
 | 
						|
 | 
						|
		btBroadphasePair previousPair;
 | 
						|
		previousPair.m_pProxy0 = 0;
 | 
						|
		previousPair.m_pProxy1 = 0;
 | 
						|
		previousPair.m_algorithm = 0;
 | 
						|
		
 | 
						|
		
 | 
						|
		for (i=0;i<overlappingPairArray.size();i++)
 | 
						|
		{
 | 
						|
		
 | 
						|
			btBroadphasePair& pair = overlappingPairArray[i];
 | 
						|
 | 
						|
			bool isDuplicate = (pair == previousPair);
 | 
						|
 | 
						|
			previousPair = pair;
 | 
						|
 | 
						|
			bool needsRemoval = false;
 | 
						|
 | 
						|
			if (!isDuplicate)
 | 
						|
			{
 | 
						|
				//important to perform AABB check that is consistent with the broadphase
 | 
						|
				btDbvtProxy*		pa=(btDbvtProxy*)pair.m_pProxy0;
 | 
						|
				btDbvtProxy*		pb=(btDbvtProxy*)pair.m_pProxy1;
 | 
						|
				bool hasOverlap = Intersect(pa->leaf->volume,pb->leaf->volume);
 | 
						|
 | 
						|
				if (hasOverlap)
 | 
						|
				{
 | 
						|
					needsRemoval = false;
 | 
						|
				} else
 | 
						|
				{
 | 
						|
					needsRemoval = true;
 | 
						|
				}
 | 
						|
			} else
 | 
						|
			{
 | 
						|
				//remove duplicate
 | 
						|
				needsRemoval = true;
 | 
						|
				//should have no algorithm
 | 
						|
				btAssert(!pair.m_algorithm);
 | 
						|
			}
 | 
						|
			
 | 
						|
			if (needsRemoval)
 | 
						|
			{
 | 
						|
				m_paircache->cleanOverlappingPair(pair,dispatcher);
 | 
						|
 | 
						|
				pair.m_pProxy0 = 0;
 | 
						|
				pair.m_pProxy1 = 0;
 | 
						|
				invalidPair++;
 | 
						|
			} 
 | 
						|
			
 | 
						|
		}
 | 
						|
 | 
						|
		//perform a sort, to sort 'invalid' pairs to the end
 | 
						|
		overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
 | 
						|
		overlappingPairArray.resize(overlappingPairArray.size() - invalidPair);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::collide(btDispatcher* dispatcher)
 | 
						|
{
 | 
						|
	/*printf("---------------------------------------------------------\n");
 | 
						|
	printf("m_sets[0].m_leaves=%d\n",m_sets[0].m_leaves);
 | 
						|
	printf("m_sets[1].m_leaves=%d\n",m_sets[1].m_leaves);
 | 
						|
	printf("numPairs = %d\n",getOverlappingPairCache()->getNumOverlappingPairs());
 | 
						|
	{
 | 
						|
		int i;
 | 
						|
		for (i=0;i<getOverlappingPairCache()->getNumOverlappingPairs();i++)
 | 
						|
		{
 | 
						|
			printf("pair[%d]=(%d,%d),",i,getOverlappingPairCache()->getOverlappingPairArray()[i].m_pProxy0->getUid(),
 | 
						|
				getOverlappingPairCache()->getOverlappingPairArray()[i].m_pProxy1->getUid());
 | 
						|
		}
 | 
						|
		printf("\n");
 | 
						|
	}
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
	SPC(m_profiling.m_total);
 | 
						|
	/* optimize				*/ 
 | 
						|
	m_sets[0].optimizeIncremental(1+(m_sets[0].m_leaves*m_dupdates)/100);
 | 
						|
	if(m_fixedleft)
 | 
						|
	{
 | 
						|
		const int count=1+(m_sets[1].m_leaves*m_fupdates)/100;
 | 
						|
		m_sets[1].optimizeIncremental(1+(m_sets[1].m_leaves*m_fupdates)/100);
 | 
						|
		m_fixedleft=btMax<int>(0,m_fixedleft-count);
 | 
						|
	}
 | 
						|
	/* dynamic -> fixed set	*/ 
 | 
						|
	m_stageCurrent=(m_stageCurrent+1)%STAGECOUNT;
 | 
						|
	btDbvtProxy*	current=m_stageRoots[m_stageCurrent];
 | 
						|
	if(current)
 | 
						|
	{
 | 
						|
#if DBVT_BP_ACCURATESLEEPING
 | 
						|
		btDbvtTreeCollider	collider(this);
 | 
						|
#endif
 | 
						|
		do	{
 | 
						|
			btDbvtProxy*	next=current->links[1];
 | 
						|
			listremove(current,m_stageRoots[current->stage]);
 | 
						|
			listappend(current,m_stageRoots[STAGECOUNT]);
 | 
						|
#if DBVT_BP_ACCURATESLEEPING
 | 
						|
			m_paircache->removeOverlappingPairsContainingProxy(current,dispatcher);
 | 
						|
			collider.proxy=current;
 | 
						|
			btDbvt::collideTV(m_sets[0].m_root,current->aabb,collider);
 | 
						|
			btDbvt::collideTV(m_sets[1].m_root,current->aabb,collider);
 | 
						|
#endif
 | 
						|
			m_sets[0].remove(current->leaf);
 | 
						|
			ATTRIBUTE_ALIGNED16(btDbvtVolume)	curAabb=btDbvtVolume::FromMM(current->m_aabbMin,current->m_aabbMax);
 | 
						|
			current->leaf	=	m_sets[1].insert(curAabb,current);
 | 
						|
			current->stage	=	STAGECOUNT;	
 | 
						|
			current			=	next;
 | 
						|
		} while(current);
 | 
						|
		m_fixedleft=m_sets[1].m_leaves;
 | 
						|
		m_needcleanup=true;
 | 
						|
	}
 | 
						|
	/* collide dynamics		*/ 
 | 
						|
	{
 | 
						|
		btDbvtTreeCollider	collider(this);
 | 
						|
		if(m_deferedcollide)
 | 
						|
		{
 | 
						|
			SPC(m_profiling.m_fdcollide);
 | 
						|
			m_sets[0].collideTTpersistentStack(m_sets[0].m_root,m_sets[1].m_root,collider);
 | 
						|
		}
 | 
						|
		if(m_deferedcollide)
 | 
						|
		{
 | 
						|
			SPC(m_profiling.m_ddcollide);
 | 
						|
			m_sets[0].collideTTpersistentStack(m_sets[0].m_root,m_sets[0].m_root,collider);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* clean up				*/ 
 | 
						|
	if(m_needcleanup)
 | 
						|
	{
 | 
						|
		SPC(m_profiling.m_cleanup);
 | 
						|
		btBroadphasePairArray&	pairs=m_paircache->getOverlappingPairArray();
 | 
						|
		if(pairs.size()>0)
 | 
						|
		{
 | 
						|
 | 
						|
			int			ni=btMin(pairs.size(),btMax<int>(m_newpairs,(pairs.size()*m_cupdates)/100));
 | 
						|
			for(int i=0;i<ni;++i)
 | 
						|
			{
 | 
						|
				btBroadphasePair&	p=pairs[(m_cid+i)%pairs.size()];
 | 
						|
				btDbvtProxy*		pa=(btDbvtProxy*)p.m_pProxy0;
 | 
						|
				btDbvtProxy*		pb=(btDbvtProxy*)p.m_pProxy1;
 | 
						|
				if(!Intersect(pa->leaf->volume,pb->leaf->volume))
 | 
						|
				{
 | 
						|
#if DBVT_BP_SORTPAIRS
 | 
						|
					if(pa->m_uniqueId>pb->m_uniqueId) 
 | 
						|
						btSwap(pa,pb);
 | 
						|
#endif
 | 
						|
					m_paircache->removeOverlappingPair(pa,pb,dispatcher);
 | 
						|
					--ni;--i;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if(pairs.size()>0) m_cid=(m_cid+ni)%pairs.size(); else m_cid=0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	++m_pid;
 | 
						|
	m_newpairs=1;
 | 
						|
	m_needcleanup=false;
 | 
						|
	if(m_updates_call>0)
 | 
						|
	{ m_updates_ratio=m_updates_done/(btScalar)m_updates_call; }
 | 
						|
	else
 | 
						|
	{ m_updates_ratio=0; }
 | 
						|
	m_updates_done/=2;
 | 
						|
	m_updates_call/=2;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::optimize()
 | 
						|
{
 | 
						|
	m_sets[0].optimizeTopDown();
 | 
						|
	m_sets[1].optimizeTopDown();
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
btOverlappingPairCache*			btDbvtBroadphase::getOverlappingPairCache()
 | 
						|
{
 | 
						|
	return(m_paircache);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
const btOverlappingPairCache*	btDbvtBroadphase::getOverlappingPairCache() const
 | 
						|
{
 | 
						|
	return(m_paircache);
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
 | 
						|
{
 | 
						|
 | 
						|
	ATTRIBUTE_ALIGNED16(btDbvtVolume)	bounds;
 | 
						|
 | 
						|
	if(!m_sets[0].empty())
 | 
						|
		if(!m_sets[1].empty())	Merge(	m_sets[0].m_root->volume,
 | 
						|
			m_sets[1].m_root->volume,bounds);
 | 
						|
		else
 | 
						|
			bounds=m_sets[0].m_root->volume;
 | 
						|
	else if(!m_sets[1].empty())	bounds=m_sets[1].m_root->volume;
 | 
						|
	else
 | 
						|
		bounds=btDbvtVolume::FromCR(btVector3(0,0,0),0);
 | 
						|
	aabbMin=bounds.Mins();
 | 
						|
	aabbMax=bounds.Maxs();
 | 
						|
}
 | 
						|
 | 
						|
void btDbvtBroadphase::resetPool(btDispatcher* dispatcher)
 | 
						|
{
 | 
						|
	
 | 
						|
	int totalObjects = m_sets[0].m_leaves + m_sets[1].m_leaves;
 | 
						|
	if (!totalObjects)
 | 
						|
	{
 | 
						|
		//reset internal dynamic tree data structures
 | 
						|
		m_sets[0].clear();
 | 
						|
		m_sets[1].clear();
 | 
						|
		
 | 
						|
		m_deferedcollide	=	false;
 | 
						|
		m_needcleanup		=	true;
 | 
						|
		m_stageCurrent		=	0;
 | 
						|
		m_fixedleft			=	0;
 | 
						|
		m_fupdates			=	1;
 | 
						|
		m_dupdates			=	0;
 | 
						|
		m_cupdates			=	10;
 | 
						|
		m_newpairs			=	1;
 | 
						|
		m_updates_call		=	0;
 | 
						|
		m_updates_done		=	0;
 | 
						|
		m_updates_ratio		=	0;
 | 
						|
		
 | 
						|
		m_gid				=	0;
 | 
						|
		m_pid				=	0;
 | 
						|
		m_cid				=	0;
 | 
						|
		for(int i=0;i<=STAGECOUNT;++i)
 | 
						|
		{
 | 
						|
			m_stageRoots[i]=0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
void							btDbvtBroadphase::printStats()
 | 
						|
{}
 | 
						|
 | 
						|
//
 | 
						|
#if DBVT_BP_ENABLE_BENCHMARK
 | 
						|
 | 
						|
struct	btBroadphaseBenchmark
 | 
						|
{
 | 
						|
	struct	Experiment
 | 
						|
	{
 | 
						|
		const char*			name;
 | 
						|
		int					object_count;
 | 
						|
		int					update_count;
 | 
						|
		int					spawn_count;
 | 
						|
		int					iterations;
 | 
						|
		btScalar			speed;
 | 
						|
		btScalar			amplitude;
 | 
						|
	};
 | 
						|
	struct	Object
 | 
						|
	{
 | 
						|
		btVector3			center;
 | 
						|
		btVector3			extents;
 | 
						|
		btBroadphaseProxy*	proxy;
 | 
						|
		btScalar			time;
 | 
						|
		void				update(btScalar speed,btScalar amplitude,btBroadphaseInterface* pbi)
 | 
						|
		{
 | 
						|
			time		+=	speed;
 | 
						|
			center[0]	=	btCos(time*(btScalar)2.17)*amplitude+
 | 
						|
				btSin(time)*amplitude/2;
 | 
						|
			center[1]	=	btCos(time*(btScalar)1.38)*amplitude+
 | 
						|
				btSin(time)*amplitude;
 | 
						|
			center[2]	=	btSin(time*(btScalar)0.777)*amplitude;
 | 
						|
			pbi->setAabb(proxy,center-extents,center+extents,0);
 | 
						|
		}
 | 
						|
	};
 | 
						|
	static int		UnsignedRand(int range=RAND_MAX-1)	{ return(rand()%(range+1)); }
 | 
						|
	static btScalar	UnitRand()							{ return(UnsignedRand(16384)/(btScalar)16384); }
 | 
						|
	static void		OutputTime(const char* name,btClock& c,unsigned count=0)
 | 
						|
	{
 | 
						|
		const unsigned long	us=c.getTimeMicroseconds();
 | 
						|
		const unsigned long	ms=(us+500)/1000;
 | 
						|
		const btScalar		sec=us/(btScalar)(1000*1000);
 | 
						|
		if(count>0)
 | 
						|
			printf("%s : %u us (%u ms), %.2f/s\r\n",name,us,ms,count/sec);
 | 
						|
		else
 | 
						|
			printf("%s : %u us (%u ms)\r\n",name,us,ms);
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
void							btDbvtBroadphase::benchmark(btBroadphaseInterface* pbi)
 | 
						|
{
 | 
						|
	static const btBroadphaseBenchmark::Experiment		experiments[]=
 | 
						|
	{
 | 
						|
		{"1024o.10%",1024,10,0,8192,(btScalar)0.005,(btScalar)100},
 | 
						|
		/*{"4096o.10%",4096,10,0,8192,(btScalar)0.005,(btScalar)100},
 | 
						|
		{"8192o.10%",8192,10,0,8192,(btScalar)0.005,(btScalar)100},*/
 | 
						|
	};
 | 
						|
	static const int										nexperiments=sizeof(experiments)/sizeof(experiments[0]);
 | 
						|
	btAlignedObjectArray<btBroadphaseBenchmark::Object*>	objects;
 | 
						|
	btClock													wallclock;
 | 
						|
	/* Begin			*/ 
 | 
						|
	for(int iexp=0;iexp<nexperiments;++iexp)
 | 
						|
	{
 | 
						|
		const btBroadphaseBenchmark::Experiment&	experiment=experiments[iexp];
 | 
						|
		const int									object_count=experiment.object_count;
 | 
						|
		const int									update_count=(object_count*experiment.update_count)/100;
 | 
						|
		const int									spawn_count=(object_count*experiment.spawn_count)/100;
 | 
						|
		const btScalar								speed=experiment.speed;	
 | 
						|
		const btScalar								amplitude=experiment.amplitude;
 | 
						|
		printf("Experiment #%u '%s':\r\n",iexp,experiment.name);
 | 
						|
		printf("\tObjects: %u\r\n",object_count);
 | 
						|
		printf("\tUpdate: %u\r\n",update_count);
 | 
						|
		printf("\tSpawn: %u\r\n",spawn_count);
 | 
						|
		printf("\tSpeed: %f\r\n",speed);
 | 
						|
		printf("\tAmplitude: %f\r\n",amplitude);
 | 
						|
		srand(180673);
 | 
						|
		/* Create objects	*/ 
 | 
						|
		wallclock.reset();
 | 
						|
		objects.reserve(object_count);
 | 
						|
		for(int i=0;i<object_count;++i)
 | 
						|
		{
 | 
						|
			btBroadphaseBenchmark::Object*	po=new btBroadphaseBenchmark::Object();
 | 
						|
			po->center[0]=btBroadphaseBenchmark::UnitRand()*50;
 | 
						|
			po->center[1]=btBroadphaseBenchmark::UnitRand()*50;
 | 
						|
			po->center[2]=btBroadphaseBenchmark::UnitRand()*50;
 | 
						|
			po->extents[0]=btBroadphaseBenchmark::UnitRand()*2+2;
 | 
						|
			po->extents[1]=btBroadphaseBenchmark::UnitRand()*2+2;
 | 
						|
			po->extents[2]=btBroadphaseBenchmark::UnitRand()*2+2;
 | 
						|
			po->time=btBroadphaseBenchmark::UnitRand()*2000;
 | 
						|
			po->proxy=pbi->createProxy(po->center-po->extents,po->center+po->extents,0,po,1,1,0,0);
 | 
						|
			objects.push_back(po);
 | 
						|
		}
 | 
						|
		btBroadphaseBenchmark::OutputTime("\tInitialization",wallclock);
 | 
						|
		/* First update		*/ 
 | 
						|
		wallclock.reset();
 | 
						|
		for(int i=0;i<objects.size();++i)
 | 
						|
		{
 | 
						|
			objects[i]->update(speed,amplitude,pbi);
 | 
						|
		}
 | 
						|
		btBroadphaseBenchmark::OutputTime("\tFirst update",wallclock);
 | 
						|
		/* Updates			*/ 
 | 
						|
		wallclock.reset();
 | 
						|
		for(int i=0;i<experiment.iterations;++i)
 | 
						|
		{
 | 
						|
			for(int j=0;j<update_count;++j)
 | 
						|
			{				
 | 
						|
				objects[j]->update(speed,amplitude,pbi);
 | 
						|
			}
 | 
						|
			pbi->calculateOverlappingPairs(0);
 | 
						|
		}
 | 
						|
		btBroadphaseBenchmark::OutputTime("\tUpdate",wallclock,experiment.iterations);
 | 
						|
		/* Clean up			*/ 
 | 
						|
		wallclock.reset();
 | 
						|
		for(int i=0;i<objects.size();++i)
 | 
						|
		{
 | 
						|
			pbi->destroyProxy(objects[i]->proxy,0);
 | 
						|
			delete objects[i];
 | 
						|
		}
 | 
						|
		objects.resize(0);
 | 
						|
		btBroadphaseBenchmark::OutputTime("\tRelease",wallclock);
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
#else
 | 
						|
void							btDbvtBroadphase::benchmark(btBroadphaseInterface*)
 | 
						|
{}
 | 
						|
#endif
 | 
						|
 | 
						|
#if DBVT_BP_PROFILE
 | 
						|
#undef	SPC
 | 
						|
#endif
 | 
						|
 |