forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			674 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			674 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import bpy, math, os, gpu, bgl, importlib
 | 
						|
import numpy as np
 | 
						|
from . import utility
 | 
						|
from fractions import Fraction
 | 
						|
from gpu_extras.batch import batch_for_shader
 | 
						|
 | 
						|
def splitLogLuvAlphaAtlas(imageIn, outDir, quality):
 | 
						|
    pass
 | 
						|
 | 
						|
def splitLogLuvAlpha(imageIn, outDir, quality):
 | 
						|
    
 | 
						|
    bpy.app.driver_namespace["logman"].append("Starting LogLuv split for: " + str(imageIn))
 | 
						|
 | 
						|
    cv2 = importlib.util.find_spec("cv2")
 | 
						|
 | 
						|
    if cv2 is None:
 | 
						|
        print("CV2 not found - Ignoring filtering")
 | 
						|
        return 0
 | 
						|
    else:
 | 
						|
        cv2 = importlib.__import__("cv2")
 | 
						|
 | 
						|
    print(imageIn)
 | 
						|
    image = cv2.imread(imageIn, cv2.IMREAD_UNCHANGED)
 | 
						|
    #cv2.imshow('image', image)
 | 
						|
    split = cv2.split(image)
 | 
						|
    merged = cv2.merge([split[0], split[1], split[2]])
 | 
						|
    alpha = split[3]
 | 
						|
    #b,g,r = cv2.split(image)
 | 
						|
    #merged = cv2.merge([b, g, r])
 | 
						|
    #alpha = cv2.merge([a,a,a])
 | 
						|
    image_name = os.path.basename(imageIn)[:-4]
 | 
						|
    #os.path.join(outDir, image_name+"_XYZ.png")
 | 
						|
 | 
						|
    cv2.imwrite(os.path.join(outDir, image_name+"_XYZ.png"), merged)
 | 
						|
    cv2.imwrite(os.path.join(outDir, image_name+"_W.png"), alpha)
 | 
						|
 | 
						|
def encodeLogLuvGPU(image, outDir, quality):
 | 
						|
 | 
						|
    bpy.app.driver_namespace["logman"].append("Starting LogLuv encode for: " + str(image.name))
 | 
						|
 | 
						|
    input_image = bpy.data.images[image.name]
 | 
						|
    image_name = input_image.name
 | 
						|
 | 
						|
    offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
 | 
						|
 | 
						|
    image = input_image
 | 
						|
 | 
						|
    vertex_shader = '''
 | 
						|
 | 
						|
        uniform mat4 ModelViewProjectionMatrix;
 | 
						|
 | 
						|
        in vec2 texCoord;
 | 
						|
        in vec2 pos;
 | 
						|
        out vec2 texCoord_interp;
 | 
						|
 | 
						|
        void main()
 | 
						|
        {
 | 
						|
        //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
 | 
						|
        //gl_Position.z = 1.0;
 | 
						|
        gl_Position = vec4(pos.xy, 100, 100);
 | 
						|
        texCoord_interp = texCoord;
 | 
						|
        }
 | 
						|
 | 
						|
    '''
 | 
						|
    fragment_shader = '''
 | 
						|
        in vec2 texCoord_interp;
 | 
						|
        out vec4 fragColor;
 | 
						|
 | 
						|
        uniform sampler2D image;
 | 
						|
        
 | 
						|
        const mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );
 | 
						|
        vec4 LinearToLogLuv( in vec4 value )  {
 | 
						|
            vec3 Xp_Y_XYZp = cLogLuvM * value.rgb;
 | 
						|
            Xp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );
 | 
						|
            vec4 vResult;
 | 
						|
            vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;
 | 
						|
            float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;
 | 
						|
            vResult.w = fract( Le );
 | 
						|
            vResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;
 | 
						|
            return vResult;
 | 
						|
            //return vec4(Xp_Y_XYZp,1);
 | 
						|
        }
 | 
						|
        
 | 
						|
        const mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );
 | 
						|
        vec4 LogLuvToLinear( in vec4 value ) {
 | 
						|
            float Le = value.z * 255.0 + value.w;
 | 
						|
            vec3 Xp_Y_XYZp;
 | 
						|
            Xp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );
 | 
						|
            Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;
 | 
						|
            Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;
 | 
						|
            vec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;
 | 
						|
            //return vec4( max( vRGB, 0.0 ), 1.0 );
 | 
						|
            return vec4( max( Xp_Y_XYZp, 0.0 ), 1.0 );
 | 
						|
        }
 | 
						|
 | 
						|
        void main()
 | 
						|
        {
 | 
						|
        //fragColor = LinearToLogLuv(pow(texture(image, texCoord_interp), vec4(0.454)));
 | 
						|
        fragColor = LinearToLogLuv(texture(image, texCoord_interp));
 | 
						|
        //fragColor = LogLuvToLinear(LinearToLogLuv(texture(image, texCoord_interp)));
 | 
						|
        }
 | 
						|
 | 
						|
    '''
 | 
						|
 | 
						|
    x_screen = 0
 | 
						|
    off_x = -100
 | 
						|
    off_y = -100
 | 
						|
    y_screen_flip = 0
 | 
						|
    sx = 200
 | 
						|
    sy = 200
 | 
						|
 | 
						|
    vertices = (
 | 
						|
                (x_screen + off_x, y_screen_flip - off_y), 
 | 
						|
                (x_screen + off_x, y_screen_flip - sy - off_y), 
 | 
						|
                (x_screen + off_x + sx, y_screen_flip - sy - off_y),
 | 
						|
                (x_screen + off_x + sx, y_screen_flip - off_x))
 | 
						|
 | 
						|
    if input_image.colorspace_settings.name != 'Linear':
 | 
						|
        input_image.colorspace_settings.name = 'Linear'
 | 
						|
 | 
						|
    # Removing .exr or .hdr prefix
 | 
						|
    if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | 
						|
        image_name = image_name[:-4]
 | 
						|
 | 
						|
    target_image = bpy.data.images.get(image_name + '_encoded')
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(image_name + '_encoded')
 | 
						|
    if not target_image:
 | 
						|
        target_image = bpy.data.images.new(
 | 
						|
                name = image_name + '_encoded',
 | 
						|
                width = input_image.size[0],
 | 
						|
                height = input_image.size[1],
 | 
						|
                alpha = True,
 | 
						|
                float_buffer = False
 | 
						|
                )
 | 
						|
 | 
						|
    shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
 | 
						|
    batch = batch_for_shader(
 | 
						|
        shader, 'TRI_FAN',
 | 
						|
        {
 | 
						|
            "pos": vertices,
 | 
						|
            "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
 | 
						|
        },
 | 
						|
    )
 | 
						|
 | 
						|
    if image.gl_load():
 | 
						|
        raise Exception()
 | 
						|
    
 | 
						|
    with offscreen.bind():
 | 
						|
        bgl.glActiveTexture(bgl.GL_TEXTURE0)
 | 
						|
        bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
 | 
						|
 | 
						|
        shader.bind()
 | 
						|
        shader.uniform_int("image", 0)
 | 
						|
        batch.draw(shader)
 | 
						|
        
 | 
						|
        buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
 | 
						|
        bgl.glReadBuffer(bgl.GL_BACK)
 | 
						|
        bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
 | 
						|
 | 
						|
    offscreen.free()
 | 
						|
    
 | 
						|
    target_image.pixels = [v / 255 for v in buffer]
 | 
						|
    input_image = target_image
 | 
						|
    
 | 
						|
    #Save LogLuv
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(input_image.name)
 | 
						|
    input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | 
						|
    #input_image.filepath_raw = outDir + "_encoded.png"
 | 
						|
    input_image.file_format = "PNG"
 | 
						|
    bpy.context.scene.render.image_settings.quality = quality
 | 
						|
    #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | 
						|
    input_image.save()
 | 
						|
 | 
						|
def encodeImageRGBDGPU(image, maxRange, outDir, quality):
 | 
						|
    input_image = bpy.data.images[image.name]
 | 
						|
    image_name = input_image.name
 | 
						|
 | 
						|
    offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
 | 
						|
 | 
						|
    image = input_image
 | 
						|
 | 
						|
    vertex_shader = '''
 | 
						|
 | 
						|
        uniform mat4 ModelViewProjectionMatrix;
 | 
						|
 | 
						|
        in vec2 texCoord;
 | 
						|
        in vec2 pos;
 | 
						|
        out vec2 texCoord_interp;
 | 
						|
 | 
						|
        void main()
 | 
						|
        {
 | 
						|
        //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
 | 
						|
        //gl_Position.z = 1.0;
 | 
						|
        gl_Position = vec4(pos.xy, 100, 100);
 | 
						|
        texCoord_interp = texCoord;
 | 
						|
        }
 | 
						|
 | 
						|
    '''
 | 
						|
    fragment_shader = '''
 | 
						|
        in vec2 texCoord_interp;
 | 
						|
        out vec4 fragColor;
 | 
						|
 | 
						|
        uniform sampler2D image;
 | 
						|
 | 
						|
        //Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx
 | 
						|
 | 
						|
        const float PI = 3.1415926535897932384626433832795;
 | 
						|
        const float HALF_MIN = 5.96046448e-08; // Smallest positive half.
 | 
						|
 | 
						|
        const float LinearEncodePowerApprox = 2.2;
 | 
						|
        const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox;
 | 
						|
        const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722);
 | 
						|
 | 
						|
        const float Epsilon = 0.0000001;
 | 
						|
        #define saturate(x)         clamp(x, 0.0, 1.0)
 | 
						|
 | 
						|
        float maxEps(float x) {
 | 
						|
            return max(x, Epsilon);
 | 
						|
        }
 | 
						|
 | 
						|
        float toLinearSpace(float color)
 | 
						|
        {
 | 
						|
            return pow(color, LinearEncodePowerApprox);
 | 
						|
        }
 | 
						|
 | 
						|
        vec3 toLinearSpace(vec3 color)
 | 
						|
        {
 | 
						|
            return pow(color, vec3(LinearEncodePowerApprox));
 | 
						|
        }
 | 
						|
 | 
						|
        vec4 toLinearSpace(vec4 color)
 | 
						|
        {
 | 
						|
            return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a);
 | 
						|
        }
 | 
						|
 | 
						|
        vec3 toGammaSpace(vec3 color)
 | 
						|
        {
 | 
						|
            return pow(color, vec3(GammaEncodePowerApprox));
 | 
						|
        }
 | 
						|
 | 
						|
        vec4 toGammaSpace(vec4 color)
 | 
						|
        {
 | 
						|
            return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a);
 | 
						|
        }
 | 
						|
 | 
						|
        float toGammaSpace(float color)
 | 
						|
        {
 | 
						|
            return pow(color, GammaEncodePowerApprox);
 | 
						|
        }
 | 
						|
 | 
						|
        float square(float value)
 | 
						|
        {
 | 
						|
            return value * value;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check if configurable value is needed.
 | 
						|
        const float rgbdMaxRange = 255.0;
 | 
						|
 | 
						|
        vec4 toRGBD(vec3 color) {
 | 
						|
            float maxRGB = maxEps(max(color.r, max(color.g, color.b)));
 | 
						|
            float D      = max(rgbdMaxRange / maxRGB, 1.);
 | 
						|
            D            = clamp(floor(D) / 255.0, 0., 1.);
 | 
						|
            vec3 rgb = color.rgb * D;
 | 
						|
            
 | 
						|
            // Helps with png quantization.
 | 
						|
            rgb = toGammaSpace(rgb);
 | 
						|
 | 
						|
            return vec4(rgb, D); 
 | 
						|
        }
 | 
						|
 | 
						|
        vec3 fromRGBD(vec4 rgbd) {
 | 
						|
            // Helps with png quantization.
 | 
						|
            rgbd.rgb = toLinearSpace(rgbd.rgb);
 | 
						|
 | 
						|
            // return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a);
 | 
						|
 | 
						|
            return rgbd.rgb / rgbd.a;
 | 
						|
        }
 | 
						|
 | 
						|
        void main()
 | 
						|
        {
 | 
						|
 | 
						|
        fragColor = toRGBD(texture(image, texCoord_interp).rgb);
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
    '''
 | 
						|
 | 
						|
    x_screen = 0
 | 
						|
    off_x = -100
 | 
						|
    off_y = -100
 | 
						|
    y_screen_flip = 0
 | 
						|
    sx = 200
 | 
						|
    sy = 200
 | 
						|
 | 
						|
    vertices = (
 | 
						|
                (x_screen + off_x, y_screen_flip - off_y), 
 | 
						|
                (x_screen + off_x, y_screen_flip - sy - off_y), 
 | 
						|
                (x_screen + off_x + sx, y_screen_flip - sy - off_y),
 | 
						|
                (x_screen + off_x + sx, y_screen_flip - off_x))
 | 
						|
 | 
						|
    if input_image.colorspace_settings.name != 'Linear':
 | 
						|
        input_image.colorspace_settings.name = 'Linear'
 | 
						|
 | 
						|
    # Removing .exr or .hdr prefix
 | 
						|
    if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | 
						|
        image_name = image_name[:-4]
 | 
						|
 | 
						|
    target_image = bpy.data.images.get(image_name + '_encoded')
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(image_name + '_encoded')
 | 
						|
    if not target_image:
 | 
						|
        target_image = bpy.data.images.new(
 | 
						|
                name = image_name + '_encoded',
 | 
						|
                width = input_image.size[0],
 | 
						|
                height = input_image.size[1],
 | 
						|
                alpha = True,
 | 
						|
                float_buffer = False
 | 
						|
                )
 | 
						|
 | 
						|
    shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
 | 
						|
    batch = batch_for_shader(
 | 
						|
        shader, 'TRI_FAN',
 | 
						|
        {
 | 
						|
            "pos": vertices,
 | 
						|
            "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
 | 
						|
        },
 | 
						|
    )
 | 
						|
 | 
						|
    if image.gl_load():
 | 
						|
        raise Exception()
 | 
						|
    
 | 
						|
    with offscreen.bind():
 | 
						|
        bgl.glActiveTexture(bgl.GL_TEXTURE0)
 | 
						|
        bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
 | 
						|
 | 
						|
        shader.bind()
 | 
						|
        shader.uniform_int("image", 0)
 | 
						|
        batch.draw(shader)
 | 
						|
        
 | 
						|
        buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
 | 
						|
        bgl.glReadBuffer(bgl.GL_BACK)
 | 
						|
        bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
 | 
						|
 | 
						|
    offscreen.free()
 | 
						|
    
 | 
						|
    target_image.pixels = [v / 255 for v in buffer]
 | 
						|
    input_image = target_image
 | 
						|
    
 | 
						|
    #Save LogLuv
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(input_image.name)
 | 
						|
    input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | 
						|
    #input_image.filepath_raw = outDir + "_encoded.png"
 | 
						|
    input_image.file_format = "PNG"
 | 
						|
    bpy.context.scene.render.image_settings.quality = quality
 | 
						|
    #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | 
						|
    input_image.save()
 | 
						|
    
 | 
						|
    #Todo - Find a way to save
 | 
						|
    #bpy.ops.image.save_all_modified()
 | 
						|
 | 
						|
#TODO - FINISH THIS
 | 
						|
def encodeImageRGBMGPU(image, maxRange, outDir, quality):
 | 
						|
    input_image = bpy.data.images[image.name]
 | 
						|
    image_name = input_image.name
 | 
						|
 | 
						|
    offscreen = gpu.types.GPUOffScreen(input_image.size[0], input_image.size[1])
 | 
						|
 | 
						|
    image = input_image
 | 
						|
 | 
						|
    vertex_shader = '''
 | 
						|
 | 
						|
        uniform mat4 ModelViewProjectionMatrix;
 | 
						|
 | 
						|
        in vec2 texCoord;
 | 
						|
        in vec2 pos;
 | 
						|
        out vec2 texCoord_interp;
 | 
						|
 | 
						|
        void main()
 | 
						|
        {
 | 
						|
        //gl_Position = ModelViewProjectionMatrix * vec4(pos.xy, 0.0f, 1.0f);
 | 
						|
        //gl_Position.z = 1.0;
 | 
						|
        gl_Position = vec4(pos.xy, 100, 100);
 | 
						|
        texCoord_interp = texCoord;
 | 
						|
        }
 | 
						|
 | 
						|
    '''
 | 
						|
    fragment_shader = '''
 | 
						|
        in vec2 texCoord_interp;
 | 
						|
        out vec4 fragColor;
 | 
						|
 | 
						|
        uniform sampler2D image;
 | 
						|
 | 
						|
        //Code from here: https://github.com/BabylonJS/Babylon.js/blob/master/src/Shaders/ShadersInclude/helperFunctions.fx
 | 
						|
 | 
						|
        const float PI = 3.1415926535897932384626433832795;
 | 
						|
        const float HALF_MIN = 5.96046448e-08; // Smallest positive half.
 | 
						|
 | 
						|
        const float LinearEncodePowerApprox = 2.2;
 | 
						|
        const float GammaEncodePowerApprox = 1.0 / LinearEncodePowerApprox;
 | 
						|
        const vec3 LuminanceEncodeApprox = vec3(0.2126, 0.7152, 0.0722);
 | 
						|
 | 
						|
        const float Epsilon = 0.0000001;
 | 
						|
        #define saturate(x)         clamp(x, 0.0, 1.0)
 | 
						|
 | 
						|
        float maxEps(float x) {
 | 
						|
            return max(x, Epsilon);
 | 
						|
        }
 | 
						|
 | 
						|
        float toLinearSpace(float color)
 | 
						|
        {
 | 
						|
            return pow(color, LinearEncodePowerApprox);
 | 
						|
        }
 | 
						|
 | 
						|
        vec3 toLinearSpace(vec3 color)
 | 
						|
        {
 | 
						|
            return pow(color, vec3(LinearEncodePowerApprox));
 | 
						|
        }
 | 
						|
 | 
						|
        vec4 toLinearSpace(vec4 color)
 | 
						|
        {
 | 
						|
            return vec4(pow(color.rgb, vec3(LinearEncodePowerApprox)), color.a);
 | 
						|
        }
 | 
						|
 | 
						|
        vec3 toGammaSpace(vec3 color)
 | 
						|
        {
 | 
						|
            return pow(color, vec3(GammaEncodePowerApprox));
 | 
						|
        }
 | 
						|
 | 
						|
        vec4 toGammaSpace(vec4 color)
 | 
						|
        {
 | 
						|
            return vec4(pow(color.rgb, vec3(GammaEncodePowerApprox)), color.a);
 | 
						|
        }
 | 
						|
 | 
						|
        float toGammaSpace(float color)
 | 
						|
        {
 | 
						|
            return pow(color, GammaEncodePowerApprox);
 | 
						|
        }
 | 
						|
 | 
						|
        float square(float value)
 | 
						|
        {
 | 
						|
            return value * value;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check if configurable value is needed.
 | 
						|
        const float rgbdMaxRange = 255.0;
 | 
						|
 | 
						|
        vec4 toRGBM(vec3 color) {
 | 
						|
 | 
						|
            vec4 rgbm;
 | 
						|
            color *= 1.0/6.0;
 | 
						|
            rgbm.a = saturate( max( max( color.r, color.g ), max( color.b, 1e-6 ) ) );
 | 
						|
            rgbm.a = clamp(floor(D) / 255.0, 0., 1.);
 | 
						|
            rgbm.rgb = color / rgbm.a;
 | 
						|
 | 
						|
            return 
 | 
						|
 | 
						|
            float maxRGB = maxEps(max(color.r, max(color.g, color.b)));
 | 
						|
            float D      = max(rgbdMaxRange / maxRGB, 1.);
 | 
						|
            D            = clamp(floor(D) / 255.0, 0., 1.);
 | 
						|
            vec3 rgb = color.rgb * D;
 | 
						|
            
 | 
						|
            // Helps with png quantization.
 | 
						|
            rgb = toGammaSpace(rgb);
 | 
						|
 | 
						|
            return vec4(rgb, D); 
 | 
						|
        }
 | 
						|
 | 
						|
        vec3 fromRGBD(vec4 rgbd) {
 | 
						|
            // Helps with png quantization.
 | 
						|
            rgbd.rgb = toLinearSpace(rgbd.rgb);
 | 
						|
 | 
						|
            // return rgbd.rgb * ((rgbdMaxRange / 255.0) / rgbd.a);
 | 
						|
 | 
						|
            return rgbd.rgb / rgbd.a;
 | 
						|
        }
 | 
						|
 | 
						|
        void main()
 | 
						|
        {
 | 
						|
 | 
						|
        fragColor = toRGBM(texture(image, texCoord_interp).rgb);
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
    '''
 | 
						|
 | 
						|
    x_screen = 0
 | 
						|
    off_x = -100
 | 
						|
    off_y = -100
 | 
						|
    y_screen_flip = 0
 | 
						|
    sx = 200
 | 
						|
    sy = 200
 | 
						|
 | 
						|
    vertices = (
 | 
						|
                (x_screen + off_x, y_screen_flip - off_y), 
 | 
						|
                (x_screen + off_x, y_screen_flip - sy - off_y), 
 | 
						|
                (x_screen + off_x + sx, y_screen_flip - sy - off_y),
 | 
						|
                (x_screen + off_x + sx, y_screen_flip - off_x))
 | 
						|
 | 
						|
    if input_image.colorspace_settings.name != 'Linear':
 | 
						|
        input_image.colorspace_settings.name = 'Linear'
 | 
						|
 | 
						|
    # Removing .exr or .hdr prefix
 | 
						|
    if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | 
						|
        image_name = image_name[:-4]
 | 
						|
 | 
						|
    target_image = bpy.data.images.get(image_name + '_encoded')
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(image_name + '_encoded')
 | 
						|
    if not target_image:
 | 
						|
        target_image = bpy.data.images.new(
 | 
						|
                name = image_name + '_encoded',
 | 
						|
                width = input_image.size[0],
 | 
						|
                height = input_image.size[1],
 | 
						|
                alpha = True,
 | 
						|
                float_buffer = False
 | 
						|
                )
 | 
						|
 | 
						|
    shader = gpu.types.GPUShader(vertex_shader, fragment_shader)
 | 
						|
    batch = batch_for_shader(
 | 
						|
        shader, 'TRI_FAN',
 | 
						|
        {
 | 
						|
            "pos": vertices,
 | 
						|
            "texCoord": ((0, 1), (0, 0), (1, 0), (1, 1)),
 | 
						|
        },
 | 
						|
    )
 | 
						|
 | 
						|
    if image.gl_load():
 | 
						|
        raise Exception()
 | 
						|
    
 | 
						|
    with offscreen.bind():
 | 
						|
        bgl.glActiveTexture(bgl.GL_TEXTURE0)
 | 
						|
        bgl.glBindTexture(bgl.GL_TEXTURE_2D, image.bindcode)
 | 
						|
 | 
						|
        shader.bind()
 | 
						|
        shader.uniform_int("image", 0)
 | 
						|
        batch.draw(shader)
 | 
						|
        
 | 
						|
        buffer = bgl.Buffer(bgl.GL_BYTE, input_image.size[0] * input_image.size[1] * 4)
 | 
						|
        bgl.glReadBuffer(bgl.GL_BACK)
 | 
						|
        bgl.glReadPixels(0, 0, input_image.size[0], input_image.size[1], bgl.GL_RGBA, bgl.GL_UNSIGNED_BYTE, buffer)
 | 
						|
 | 
						|
    offscreen.free()
 | 
						|
    
 | 
						|
    target_image.pixels = [v / 255 for v in buffer]
 | 
						|
    input_image = target_image
 | 
						|
    
 | 
						|
    #Save LogLuv
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(input_image.name)
 | 
						|
    input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | 
						|
    #input_image.filepath_raw = outDir + "_encoded.png"
 | 
						|
    input_image.file_format = "PNG"
 | 
						|
    bpy.context.scene.render.image_settings.quality = quality
 | 
						|
    #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | 
						|
    input_image.save()
 | 
						|
    
 | 
						|
    #Todo - Find a way to save
 | 
						|
    #bpy.ops.image.save_all_modified()
 | 
						|
 | 
						|
def encodeImageRGBMCPU(image, maxRange, outDir, quality):
 | 
						|
    input_image = bpy.data.images[image.name]
 | 
						|
    image_name = input_image.name
 | 
						|
 | 
						|
    if input_image.colorspace_settings.name != 'Linear':
 | 
						|
        input_image.colorspace_settings.name = 'Linear'
 | 
						|
 | 
						|
    # Removing .exr or .hdr prefix
 | 
						|
    if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | 
						|
        image_name = image_name[:-4]
 | 
						|
 | 
						|
    target_image = bpy.data.images.get(image_name + '_encoded')
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(image_name + '_encoded')
 | 
						|
    if not target_image:
 | 
						|
        target_image = bpy.data.images.new(
 | 
						|
                name = image_name + '_encoded',
 | 
						|
                width = input_image.size[0],
 | 
						|
                height = input_image.size[1],
 | 
						|
                alpha = True,
 | 
						|
                float_buffer = False
 | 
						|
                )
 | 
						|
    
 | 
						|
    num_pixels = len(input_image.pixels)
 | 
						|
    result_pixel = list(input_image.pixels)
 | 
						|
 | 
						|
    for i in range(0,num_pixels,4):
 | 
						|
        for j in range(3):
 | 
						|
            result_pixel[i+j] *= 1.0 / maxRange;
 | 
						|
        result_pixel[i+3] = saturate(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2], 1e-6))
 | 
						|
        result_pixel[i+3] = math.ceil(result_pixel[i+3] * 255.0) / 255.0
 | 
						|
        for j in range(3):
 | 
						|
            result_pixel[i+j] /= result_pixel[i+3]
 | 
						|
    
 | 
						|
    target_image.pixels = result_pixel
 | 
						|
    input_image = target_image
 | 
						|
    
 | 
						|
    #Save RGBM
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(input_image.name)
 | 
						|
    input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | 
						|
    input_image.file_format = "PNG"
 | 
						|
    bpy.context.scene.render.image_settings.quality = quality
 | 
						|
    input_image.save()
 | 
						|
 | 
						|
    #input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | 
						|
    # input_image.filepath_raw = outDir + "_encoded.png"
 | 
						|
    # input_image.file_format = "PNG"
 | 
						|
    # bpy.context.scene.render.image_settings.quality = quality
 | 
						|
    # input_image.save_render(filepath = input_image.filepath_raw, scene = bpy.context.scene)
 | 
						|
    #input_image.
 | 
						|
    #input_image.save()
 | 
						|
 | 
						|
def saturate(num, floats=True):
 | 
						|
    if num <= 0:
 | 
						|
        num = 0
 | 
						|
    elif num > (1 if floats else 255):
 | 
						|
        num = (1 if floats else 255)
 | 
						|
    return num
 | 
						|
 | 
						|
def maxEps(x):
 | 
						|
    return max(x, 1e-6)
 | 
						|
 | 
						|
def encodeImageRGBDCPU(image, maxRange, outDir, quality):
 | 
						|
    input_image = bpy.data.images[image.name]
 | 
						|
    image_name = input_image.name
 | 
						|
 | 
						|
    if input_image.colorspace_settings.name != 'Linear':
 | 
						|
        input_image.colorspace_settings.name = 'Linear'
 | 
						|
 | 
						|
    # Removing .exr or .hdr prefix
 | 
						|
    if image_name[-4:] == '.exr' or image_name[-4:] == '.hdr':
 | 
						|
        image_name = image_name[:-4]
 | 
						|
 | 
						|
    target_image = bpy.data.images.get(image_name + '_encoded')
 | 
						|
    if not target_image:
 | 
						|
        target_image = bpy.data.images.new(
 | 
						|
                name = image_name + '_encoded',
 | 
						|
                width = input_image.size[0],
 | 
						|
                height = input_image.size[1],
 | 
						|
                alpha = True,
 | 
						|
                float_buffer = False
 | 
						|
                )
 | 
						|
    
 | 
						|
    num_pixels = len(input_image.pixels)
 | 
						|
    result_pixel = list(input_image.pixels)
 | 
						|
 | 
						|
    rgbdMaxRange = 255.0
 | 
						|
 | 
						|
    for i in range(0,num_pixels,4):
 | 
						|
 | 
						|
        maxRGB = maxEps(max(result_pixel[i], result_pixel[i+1], result_pixel[i+2]))
 | 
						|
        D = max(rgbdMaxRange/maxRGB, 1.0)
 | 
						|
        D = np.clip((math.floor(D) / 255.0), 0.0, 1.0)
 | 
						|
 | 
						|
        result_pixel[i] = math.pow(result_pixel[i] * D, 1/2.2)
 | 
						|
        result_pixel[i+1] = math.pow(result_pixel[i+1] * D, 1/2.2)
 | 
						|
        result_pixel[i+2] = math.pow(result_pixel[i+2] * D, 1/2.2)
 | 
						|
        result_pixel[i+3] = D
 | 
						|
    
 | 
						|
    target_image.pixels = result_pixel
 | 
						|
    
 | 
						|
    input_image = target_image
 | 
						|
 | 
						|
    #Save RGBD
 | 
						|
    if bpy.context.scene.TLM_SceneProperties.tlm_verbose:
 | 
						|
        print(input_image.name)
 | 
						|
    input_image.filepath_raw = outDir + "/" + input_image.name + ".png"
 | 
						|
    input_image.file_format = "PNG"
 | 
						|
    bpy.context.scene.render.image_settings.quality = quality
 | 
						|
    input_image.save() |