forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			620 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			620 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
 | |
| //
 | |
| // This software is provided 'as-is', without any express or implied
 | |
| // warranty.  In no event will the authors be held liable for any damages
 | |
| // arising from the use of this software.
 | |
| // Permission is granted to anyone to use this software for any purpose,
 | |
| // including commercial applications, and to alter it and redistribute it
 | |
| // freely, subject to the following restrictions:
 | |
| // 1. The origin of this software must not be misrepresented; you must not
 | |
| //    claim that you wrote the original software. If you use this software
 | |
| //    in a product, an acknowledgment in the product documentation would be
 | |
| //    appreciated but is not required.
 | |
| // 2. Altered source versions must be plainly marked as such, and must not be
 | |
| //    misrepresented as being the original software.
 | |
| // 3. This notice may not be removed or altered from any source distribution.
 | |
| //
 | |
| 
 | |
| #include "DetourObstacleAvoidance.h"
 | |
| #include "DetourCommon.h"
 | |
| #include "DetourMath.h"
 | |
| #include "DetourAlloc.h"
 | |
| #include "DetourAssert.h"
 | |
| #include <string.h>
 | |
| #include <float.h>
 | |
| #include <new>
 | |
| 
 | |
| static const float DT_PI = 3.14159265f;
 | |
| 
 | |
| static int sweepCircleCircle(const float* c0, const float r0, const float* v,
 | |
| 							 const float* c1, const float r1,
 | |
| 							 float& tmin, float& tmax)
 | |
| {
 | |
| 	static const float EPS = 0.0001f;
 | |
| 	float s[3];
 | |
| 	dtVsub(s,c1,c0);
 | |
| 	float r = r0+r1;
 | |
| 	float c = dtVdot2D(s,s) - r*r;
 | |
| 	float a = dtVdot2D(v,v);
 | |
| 	if (a < EPS) return 0;	// not moving
 | |
| 	
 | |
| 	// Overlap, calc time to exit.
 | |
| 	float b = dtVdot2D(v,s);
 | |
| 	float d = b*b - a*c;
 | |
| 	if (d < 0.0f) return 0; // no intersection.
 | |
| 	a = 1.0f / a;
 | |
| 	const float rd = dtMathSqrtf(d);
 | |
| 	tmin = (b - rd) * a;
 | |
| 	tmax = (b + rd) * a;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int isectRaySeg(const float* ap, const float* u,
 | |
| 					   const float* bp, const float* bq,
 | |
| 					   float& t)
 | |
| {
 | |
| 	float v[3], w[3];
 | |
| 	dtVsub(v,bq,bp);
 | |
| 	dtVsub(w,ap,bp);
 | |
| 	float d = dtVperp2D(u,v);
 | |
| 	if (dtMathFabsf(d) < 1e-6f) return 0;
 | |
| 	d = 1.0f/d;
 | |
| 	t = dtVperp2D(v,w) * d;
 | |
| 	if (t < 0 || t > 1) return 0;
 | |
| 	float s = dtVperp2D(u,w) * d;
 | |
| 	if (s < 0 || s > 1) return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| dtObstacleAvoidanceDebugData* dtAllocObstacleAvoidanceDebugData()
 | |
| {
 | |
| 	void* mem = dtAlloc(sizeof(dtObstacleAvoidanceDebugData), DT_ALLOC_PERM);
 | |
| 	if (!mem) return 0;
 | |
| 	return new(mem) dtObstacleAvoidanceDebugData;
 | |
| }
 | |
| 
 | |
| void dtFreeObstacleAvoidanceDebugData(dtObstacleAvoidanceDebugData* ptr)
 | |
| {
 | |
| 	if (!ptr) return;
 | |
| 	ptr->~dtObstacleAvoidanceDebugData();
 | |
| 	dtFree(ptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| dtObstacleAvoidanceDebugData::dtObstacleAvoidanceDebugData() :
 | |
| 	m_nsamples(0),
 | |
| 	m_maxSamples(0),
 | |
| 	m_vel(0),
 | |
| 	m_ssize(0),
 | |
| 	m_pen(0),
 | |
| 	m_vpen(0),
 | |
| 	m_vcpen(0),
 | |
| 	m_spen(0),
 | |
| 	m_tpen(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| dtObstacleAvoidanceDebugData::~dtObstacleAvoidanceDebugData()
 | |
| {
 | |
| 	dtFree(m_vel);
 | |
| 	dtFree(m_ssize);
 | |
| 	dtFree(m_pen);
 | |
| 	dtFree(m_vpen);
 | |
| 	dtFree(m_vcpen);
 | |
| 	dtFree(m_spen);
 | |
| 	dtFree(m_tpen);
 | |
| }
 | |
| 		
 | |
| bool dtObstacleAvoidanceDebugData::init(const int maxSamples)
 | |
| {
 | |
| 	dtAssert(maxSamples);
 | |
| 	m_maxSamples = maxSamples;
 | |
| 
 | |
| 	m_vel = (float*)dtAlloc(sizeof(float)*3*m_maxSamples, DT_ALLOC_PERM);
 | |
| 	if (!m_vel)
 | |
| 		return false;
 | |
| 	m_pen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
 | |
| 	if (!m_pen)
 | |
| 		return false;
 | |
| 	m_ssize = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
 | |
| 	if (!m_ssize)
 | |
| 		return false;
 | |
| 	m_vpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
 | |
| 	if (!m_vpen)
 | |
| 		return false;
 | |
| 	m_vcpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
 | |
| 	if (!m_vcpen)
 | |
| 		return false;
 | |
| 	m_spen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
 | |
| 	if (!m_spen)
 | |
| 		return false;
 | |
| 	m_tpen = (float*)dtAlloc(sizeof(float)*m_maxSamples, DT_ALLOC_PERM);
 | |
| 	if (!m_tpen)
 | |
| 		return false;
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void dtObstacleAvoidanceDebugData::reset()
 | |
| {
 | |
| 	m_nsamples = 0;
 | |
| }
 | |
| 
 | |
| void dtObstacleAvoidanceDebugData::addSample(const float* vel, const float ssize, const float pen,
 | |
| 											 const float vpen, const float vcpen, const float spen, const float tpen)
 | |
| {
 | |
| 	if (m_nsamples >= m_maxSamples)
 | |
| 		return;
 | |
| 	dtAssert(m_vel);
 | |
| 	dtAssert(m_ssize);
 | |
| 	dtAssert(m_pen);
 | |
| 	dtAssert(m_vpen);
 | |
| 	dtAssert(m_vcpen);
 | |
| 	dtAssert(m_spen);
 | |
| 	dtAssert(m_tpen);
 | |
| 	dtVcopy(&m_vel[m_nsamples*3], vel);
 | |
| 	m_ssize[m_nsamples] = ssize;
 | |
| 	m_pen[m_nsamples] = pen;
 | |
| 	m_vpen[m_nsamples] = vpen;
 | |
| 	m_vcpen[m_nsamples] = vcpen;
 | |
| 	m_spen[m_nsamples] = spen;
 | |
| 	m_tpen[m_nsamples] = tpen;
 | |
| 	m_nsamples++;
 | |
| }
 | |
| 
 | |
| static void normalizeArray(float* arr, const int n)
 | |
| {
 | |
| 	// Normalize penaly range.
 | |
| 	float minPen = FLT_MAX;
 | |
| 	float maxPen = -FLT_MAX;
 | |
| 	for (int i = 0; i < n; ++i)
 | |
| 	{
 | |
| 		minPen = dtMin(minPen, arr[i]);
 | |
| 		maxPen = dtMax(maxPen, arr[i]);
 | |
| 	}
 | |
| 	const float penRange = maxPen-minPen;
 | |
| 	const float s = penRange > 0.001f ? (1.0f / penRange) : 1;
 | |
| 	for (int i = 0; i < n; ++i)
 | |
| 		arr[i] = dtClamp((arr[i]-minPen)*s, 0.0f, 1.0f);
 | |
| }
 | |
| 
 | |
| void dtObstacleAvoidanceDebugData::normalizeSamples()
 | |
| {
 | |
| 	normalizeArray(m_pen, m_nsamples);
 | |
| 	normalizeArray(m_vpen, m_nsamples);
 | |
| 	normalizeArray(m_vcpen, m_nsamples);
 | |
| 	normalizeArray(m_spen, m_nsamples);
 | |
| 	normalizeArray(m_tpen, m_nsamples);
 | |
| }
 | |
| 
 | |
| 
 | |
| dtObstacleAvoidanceQuery* dtAllocObstacleAvoidanceQuery()
 | |
| {
 | |
| 	void* mem = dtAlloc(sizeof(dtObstacleAvoidanceQuery), DT_ALLOC_PERM);
 | |
| 	if (!mem) return 0;
 | |
| 	return new(mem) dtObstacleAvoidanceQuery;
 | |
| }
 | |
| 
 | |
| void dtFreeObstacleAvoidanceQuery(dtObstacleAvoidanceQuery* ptr)
 | |
| {
 | |
| 	if (!ptr) return;
 | |
| 	ptr->~dtObstacleAvoidanceQuery();
 | |
| 	dtFree(ptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| dtObstacleAvoidanceQuery::dtObstacleAvoidanceQuery() :
 | |
| 	m_invHorizTime(0),
 | |
| 	m_vmax(0),
 | |
| 	m_invVmax(0),
 | |
| 	m_maxCircles(0),
 | |
| 	m_circles(0),
 | |
| 	m_ncircles(0),
 | |
| 	m_maxSegments(0),
 | |
| 	m_segments(0),
 | |
| 	m_nsegments(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| dtObstacleAvoidanceQuery::~dtObstacleAvoidanceQuery()
 | |
| {
 | |
| 	dtFree(m_circles);
 | |
| 	dtFree(m_segments);
 | |
| }
 | |
| 
 | |
| bool dtObstacleAvoidanceQuery::init(const int maxCircles, const int maxSegments)
 | |
| {
 | |
| 	m_maxCircles = maxCircles;
 | |
| 	m_ncircles = 0;
 | |
| 	m_circles = (dtObstacleCircle*)dtAlloc(sizeof(dtObstacleCircle)*m_maxCircles, DT_ALLOC_PERM);
 | |
| 	if (!m_circles)
 | |
| 		return false;
 | |
| 	memset(m_circles, 0, sizeof(dtObstacleCircle)*m_maxCircles);
 | |
| 
 | |
| 	m_maxSegments = maxSegments;
 | |
| 	m_nsegments = 0;
 | |
| 	m_segments = (dtObstacleSegment*)dtAlloc(sizeof(dtObstacleSegment)*m_maxSegments, DT_ALLOC_PERM);
 | |
| 	if (!m_segments)
 | |
| 		return false;
 | |
| 	memset(m_segments, 0, sizeof(dtObstacleSegment)*m_maxSegments);
 | |
| 	
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void dtObstacleAvoidanceQuery::reset()
 | |
| {
 | |
| 	m_ncircles = 0;
 | |
| 	m_nsegments = 0;
 | |
| }
 | |
| 
 | |
| void dtObstacleAvoidanceQuery::addCircle(const float* pos, const float rad,
 | |
| 										 const float* vel, const float* dvel)
 | |
| {
 | |
| 	if (m_ncircles >= m_maxCircles)
 | |
| 		return;
 | |
| 		
 | |
| 	dtObstacleCircle* cir = &m_circles[m_ncircles++];
 | |
| 	dtVcopy(cir->p, pos);
 | |
| 	cir->rad = rad;
 | |
| 	dtVcopy(cir->vel, vel);
 | |
| 	dtVcopy(cir->dvel, dvel);
 | |
| }
 | |
| 
 | |
| void dtObstacleAvoidanceQuery::addSegment(const float* p, const float* q)
 | |
| {
 | |
| 	if (m_nsegments >= m_maxSegments)
 | |
| 		return;
 | |
| 	
 | |
| 	dtObstacleSegment* seg = &m_segments[m_nsegments++];
 | |
| 	dtVcopy(seg->p, p);
 | |
| 	dtVcopy(seg->q, q);
 | |
| }
 | |
| 
 | |
| void dtObstacleAvoidanceQuery::prepare(const float* pos, const float* dvel)
 | |
| {
 | |
| 	// Prepare obstacles
 | |
| 	for (int i = 0; i < m_ncircles; ++i)
 | |
| 	{
 | |
| 		dtObstacleCircle* cir = &m_circles[i];
 | |
| 		
 | |
| 		// Side
 | |
| 		const float* pa = pos;
 | |
| 		const float* pb = cir->p;
 | |
| 		
 | |
| 		const float orig[3] = {0,0,0};
 | |
| 		float dv[3];
 | |
| 		dtVsub(cir->dp,pb,pa);
 | |
| 		dtVnormalize(cir->dp);
 | |
| 		dtVsub(dv, cir->dvel, dvel);
 | |
| 		
 | |
| 		const float a = dtTriArea2D(orig, cir->dp,dv);
 | |
| 		if (a < 0.01f)
 | |
| 		{
 | |
| 			cir->np[0] = -cir->dp[2];
 | |
| 			cir->np[2] = cir->dp[0];
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			cir->np[0] = cir->dp[2];
 | |
| 			cir->np[2] = -cir->dp[0];
 | |
| 		}
 | |
| 	}	
 | |
| 
 | |
| 	for (int i = 0; i < m_nsegments; ++i)
 | |
| 	{
 | |
| 		dtObstacleSegment* seg = &m_segments[i];
 | |
| 		
 | |
| 		// Precalc if the agent is really close to the segment.
 | |
| 		const float r = 0.01f;
 | |
| 		float t;
 | |
| 		seg->touch = dtDistancePtSegSqr2D(pos, seg->p, seg->q, t) < dtSqr(r);
 | |
| 	}	
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Calculate the collision penalty for a given velocity vector
 | |
|  * 
 | |
|  * @param vcand sampled velocity
 | |
|  * @param dvel desired velocity
 | |
|  * @param minPenalty threshold penalty for early out
 | |
|  */
 | |
| float dtObstacleAvoidanceQuery::processSample(const float* vcand, const float cs,
 | |
| 											  const float* pos, const float rad,
 | |
| 											  const float* vel, const float* dvel,
 | |
| 											  const float minPenalty,
 | |
| 											  dtObstacleAvoidanceDebugData* debug)
 | |
| {
 | |
| 	// penalty for straying away from the desired and current velocities
 | |
| 	const float vpen = m_params.weightDesVel * (dtVdist2D(vcand, dvel) * m_invVmax);
 | |
| 	const float vcpen = m_params.weightCurVel * (dtVdist2D(vcand, vel) * m_invVmax);
 | |
| 
 | |
| 	// find the threshold hit time to bail out based on the early out penalty
 | |
| 	// (see how the penalty is calculated below to understnad)
 | |
| 	float minPen = minPenalty - vpen - vcpen;
 | |
| 	float tThresold = (m_params.weightToi / minPen - 0.1f) * m_params.horizTime;
 | |
| 	if (tThresold - m_params.horizTime > -FLT_EPSILON)
 | |
| 		return minPenalty; // already too much
 | |
| 
 | |
| 	// Find min time of impact and exit amongst all obstacles.
 | |
| 	float tmin = m_params.horizTime;
 | |
| 	float side = 0;
 | |
| 	int nside = 0;
 | |
| 	
 | |
| 	for (int i = 0; i < m_ncircles; ++i)
 | |
| 	{
 | |
| 		const dtObstacleCircle* cir = &m_circles[i];
 | |
| 			
 | |
| 		// RVO
 | |
| 		float vab[3];
 | |
| 		dtVscale(vab, vcand, 2);
 | |
| 		dtVsub(vab, vab, vel);
 | |
| 		dtVsub(vab, vab, cir->vel);
 | |
| 		
 | |
| 		// Side
 | |
| 		side += dtClamp(dtMin(dtVdot2D(cir->dp,vab)*0.5f+0.5f, dtVdot2D(cir->np,vab)*2), 0.0f, 1.0f);
 | |
| 		nside++;
 | |
| 		
 | |
| 		float htmin = 0, htmax = 0;
 | |
| 		if (!sweepCircleCircle(pos,rad, vab, cir->p,cir->rad, htmin, htmax))
 | |
| 			continue;
 | |
| 		
 | |
| 		// Handle overlapping obstacles.
 | |
| 		if (htmin < 0.0f && htmax > 0.0f)
 | |
| 		{
 | |
| 			// Avoid more when overlapped.
 | |
| 			htmin = -htmin * 0.5f;
 | |
| 		}
 | |
| 		
 | |
| 		if (htmin >= 0.0f)
 | |
| 		{
 | |
| 			// The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
 | |
| 			if (htmin < tmin)
 | |
| 			{
 | |
| 				tmin = htmin;
 | |
| 				if (tmin < tThresold)
 | |
| 					return minPenalty;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < m_nsegments; ++i)
 | |
| 	{
 | |
| 		const dtObstacleSegment* seg = &m_segments[i];
 | |
| 		float htmin = 0;
 | |
| 		
 | |
| 		if (seg->touch)
 | |
| 		{
 | |
| 			// Special case when the agent is very close to the segment.
 | |
| 			float sdir[3], snorm[3];
 | |
| 			dtVsub(sdir, seg->q, seg->p);
 | |
| 			snorm[0] = -sdir[2];
 | |
| 			snorm[2] = sdir[0];
 | |
| 			// If the velocity is pointing towards the segment, no collision.
 | |
| 			if (dtVdot2D(snorm, vcand) < 0.0f)
 | |
| 				continue;
 | |
| 			// Else immediate collision.
 | |
| 			htmin = 0.0f;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			if (!isectRaySeg(pos, vcand, seg->p, seg->q, htmin))
 | |
| 				continue;
 | |
| 		}
 | |
| 		
 | |
| 		// Avoid less when facing walls.
 | |
| 		htmin *= 2.0f;
 | |
| 		
 | |
| 		// The closest obstacle is somewhere ahead of us, keep track of nearest obstacle.
 | |
| 		if (htmin < tmin)
 | |
| 		{
 | |
| 			tmin = htmin;
 | |
| 			if (tmin < tThresold)
 | |
| 				return minPenalty;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	// Normalize side bias, to prevent it dominating too much.
 | |
| 	if (nside)
 | |
| 		side /= nside;
 | |
| 	
 | |
| 	const float spen = m_params.weightSide * side;
 | |
| 	const float tpen = m_params.weightToi * (1.0f/(0.1f+tmin*m_invHorizTime));
 | |
| 	
 | |
| 	const float penalty = vpen + vcpen + spen + tpen;
 | |
| 	
 | |
| 	// Store different penalties for debug viewing
 | |
| 	if (debug)
 | |
| 		debug->addSample(vcand, cs, penalty, vpen, vcpen, spen, tpen);
 | |
| 	
 | |
| 	return penalty;
 | |
| }
 | |
| 
 | |
| int dtObstacleAvoidanceQuery::sampleVelocityGrid(const float* pos, const float rad, const float vmax,
 | |
| 												 const float* vel, const float* dvel, float* nvel,
 | |
| 												 const dtObstacleAvoidanceParams* params,
 | |
| 												 dtObstacleAvoidanceDebugData* debug)
 | |
| {
 | |
| 	prepare(pos, dvel);
 | |
| 	
 | |
| 	memcpy(&m_params, params, sizeof(dtObstacleAvoidanceParams));
 | |
| 	m_invHorizTime = 1.0f / m_params.horizTime;
 | |
| 	m_vmax = vmax;
 | |
| 	m_invVmax = vmax > 0 ? 1.0f / vmax : FLT_MAX;
 | |
| 	
 | |
| 	dtVset(nvel, 0,0,0);
 | |
| 	
 | |
| 	if (debug)
 | |
| 		debug->reset();
 | |
| 
 | |
| 	const float cvx = dvel[0] * m_params.velBias;
 | |
| 	const float cvz = dvel[2] * m_params.velBias;
 | |
| 	const float cs = vmax * 2 * (1 - m_params.velBias) / (float)(m_params.gridSize-1);
 | |
| 	const float half = (m_params.gridSize-1)*cs*0.5f;
 | |
| 		
 | |
| 	float minPenalty = FLT_MAX;
 | |
| 	int ns = 0;
 | |
| 		
 | |
| 	for (int y = 0; y < m_params.gridSize; ++y)
 | |
| 	{
 | |
| 		for (int x = 0; x < m_params.gridSize; ++x)
 | |
| 		{
 | |
| 			float vcand[3];
 | |
| 			vcand[0] = cvx + x*cs - half;
 | |
| 			vcand[1] = 0;
 | |
| 			vcand[2] = cvz + y*cs - half;
 | |
| 			
 | |
| 			if (dtSqr(vcand[0])+dtSqr(vcand[2]) > dtSqr(vmax+cs/2)) continue;
 | |
| 			
 | |
| 			const float penalty = processSample(vcand, cs, pos,rad,vel,dvel, minPenalty, debug);
 | |
| 			ns++;
 | |
| 			if (penalty < minPenalty)
 | |
| 			{
 | |
| 				minPenalty = penalty;
 | |
| 				dtVcopy(nvel, vcand);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| 
 | |
| // vector normalization that ignores the y-component.
 | |
| inline void dtNormalize2D(float* v)
 | |
| {
 | |
| 	float d = dtMathSqrtf(v[0] * v[0] + v[2] * v[2]);
 | |
| 	if (d==0)
 | |
| 		return;
 | |
| 	d = 1.0f / d;
 | |
| 	v[0] *= d;
 | |
| 	v[2] *= d;
 | |
| }
 | |
| 
 | |
| // vector normalization that ignores the y-component.
 | |
| inline void dtRorate2D(float* dest, const float* v, float ang)
 | |
| {
 | |
| 	float c = cosf(ang);
 | |
| 	float s = sinf(ang);
 | |
| 	dest[0] = v[0]*c - v[2]*s;
 | |
| 	dest[2] = v[0]*s + v[2]*c;
 | |
| 	dest[1] = v[1];
 | |
| }
 | |
| 
 | |
| 
 | |
| int dtObstacleAvoidanceQuery::sampleVelocityAdaptive(const float* pos, const float rad, const float vmax,
 | |
| 													 const float* vel, const float* dvel, float* nvel,
 | |
| 													 const dtObstacleAvoidanceParams* params,
 | |
| 													 dtObstacleAvoidanceDebugData* debug)
 | |
| {
 | |
| 	prepare(pos, dvel);
 | |
| 	
 | |
| 	memcpy(&m_params, params, sizeof(dtObstacleAvoidanceParams));
 | |
| 	m_invHorizTime = 1.0f / m_params.horizTime;
 | |
| 	m_vmax = vmax;
 | |
| 	m_invVmax = vmax > 0 ? 1.0f / vmax : FLT_MAX;
 | |
| 	
 | |
| 	dtVset(nvel, 0,0,0);
 | |
| 	
 | |
| 	if (debug)
 | |
| 		debug->reset();
 | |
| 
 | |
| 	// Build sampling pattern aligned to desired velocity.
 | |
| 	float pat[(DT_MAX_PATTERN_DIVS*DT_MAX_PATTERN_RINGS+1)*2];
 | |
| 	int npat = 0;
 | |
| 
 | |
| 	const int ndivs = (int)m_params.adaptiveDivs;
 | |
| 	const int nrings= (int)m_params.adaptiveRings;
 | |
| 	const int depth = (int)m_params.adaptiveDepth;
 | |
| 	
 | |
| 	const int nd = dtClamp(ndivs, 1, DT_MAX_PATTERN_DIVS);
 | |
| 	const int nr = dtClamp(nrings, 1, DT_MAX_PATTERN_RINGS);
 | |
| 	const float da = (1.0f/nd) * DT_PI*2;
 | |
| 	const float ca = cosf(da);
 | |
| 	const float sa = sinf(da);
 | |
| 
 | |
| 	// desired direction
 | |
| 	float ddir[6];
 | |
| 	dtVcopy(ddir, dvel);
 | |
| 	dtNormalize2D(ddir);
 | |
| 	dtRorate2D (ddir+3, ddir, da*0.5f); // rotated by da/2
 | |
| 
 | |
| 	// Always add sample at zero
 | |
| 	pat[npat*2+0] = 0;
 | |
| 	pat[npat*2+1] = 0;
 | |
| 	npat++;
 | |
| 	
 | |
| 	for (int j = 0; j < nr; ++j)
 | |
| 	{
 | |
| 		const float r = (float)(nr-j)/(float)nr;
 | |
| 		pat[npat*2+0] = ddir[(j%2)*3] * r;
 | |
| 		pat[npat*2+1] = ddir[(j%2)*3+2] * r;
 | |
| 		float* last1 = pat + npat*2;
 | |
| 		float* last2 = last1;
 | |
| 		npat++;
 | |
| 
 | |
| 		for (int i = 1; i < nd-1; i+=2)
 | |
| 		{
 | |
| 			// get next point on the "right" (rotate CW)
 | |
| 			pat[npat*2+0] = last1[0]*ca + last1[1]*sa;
 | |
| 			pat[npat*2+1] = -last1[0]*sa + last1[1]*ca;
 | |
| 			// get next point on the "left" (rotate CCW)
 | |
| 			pat[npat*2+2] = last2[0]*ca - last2[1]*sa;
 | |
| 			pat[npat*2+3] = last2[0]*sa + last2[1]*ca;
 | |
| 
 | |
| 			last1 = pat + npat*2;
 | |
| 			last2 = last1 + 2;
 | |
| 			npat += 2;
 | |
| 		}
 | |
| 
 | |
| 		if ((nd&1) == 0)
 | |
| 		{
 | |
| 			pat[npat*2+2] = last2[0]*ca - last2[1]*sa;
 | |
| 			pat[npat*2+3] = last2[0]*sa + last2[1]*ca;
 | |
| 			npat++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	// Start sampling.
 | |
| 	float cr = vmax * (1.0f - m_params.velBias);
 | |
| 	float res[3];
 | |
| 	dtVset(res, dvel[0] * m_params.velBias, 0, dvel[2] * m_params.velBias);
 | |
| 	int ns = 0;
 | |
| 
 | |
| 	for (int k = 0; k < depth; ++k)
 | |
| 	{
 | |
| 		float minPenalty = FLT_MAX;
 | |
| 		float bvel[3];
 | |
| 		dtVset(bvel, 0,0,0);
 | |
| 		
 | |
| 		for (int i = 0; i < npat; ++i)
 | |
| 		{
 | |
| 			float vcand[3];
 | |
| 			vcand[0] = res[0] + pat[i*2+0]*cr;
 | |
| 			vcand[1] = 0;
 | |
| 			vcand[2] = res[2] + pat[i*2+1]*cr;
 | |
| 			
 | |
| 			if (dtSqr(vcand[0])+dtSqr(vcand[2]) > dtSqr(vmax+0.001f)) continue;
 | |
| 			
 | |
| 			const float penalty = processSample(vcand,cr/10, pos,rad,vel,dvel, minPenalty, debug);
 | |
| 			ns++;
 | |
| 			if (penalty < minPenalty)
 | |
| 			{
 | |
| 				minPenalty = penalty;
 | |
| 				dtVcopy(bvel, vcand);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dtVcopy(res, bvel);
 | |
| 
 | |
| 		cr *= 0.5f;
 | |
| 	}	
 | |
| 	
 | |
| 	dtVcopy(nvel, res);
 | |
| 	
 | |
| 	return ns;
 | |
| }
 |