forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#ifndef BT_JACOBIAN_ENTRY_H
 | 
						|
#define BT_JACOBIAN_ENTRY_H
 | 
						|
 | 
						|
#include "LinearMath/btMatrix3x3.h"
 | 
						|
 | 
						|
 | 
						|
//notes:
 | 
						|
// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
 | 
						|
// which makes the btJacobianEntry memory layout 16 bytes
 | 
						|
// if you only are interested in angular part, just feed massInvA and massInvB zero
 | 
						|
 | 
						|
/// Jacobian entry is an abstraction that allows to describe constraints
 | 
						|
/// it can be used in combination with a constraint solver
 | 
						|
/// Can be used to relate the effect of an impulse to the constraint error
 | 
						|
ATTRIBUTE_ALIGNED16(class) btJacobianEntry
 | 
						|
{
 | 
						|
public:
 | 
						|
	btJacobianEntry() {};
 | 
						|
	//constraint between two different rigidbodies
 | 
						|
	btJacobianEntry(
 | 
						|
		const btMatrix3x3& world2A,
 | 
						|
		const btMatrix3x3& world2B,
 | 
						|
		const btVector3& rel_pos1,const btVector3& rel_pos2,
 | 
						|
		const btVector3& jointAxis,
 | 
						|
		const btVector3& inertiaInvA, 
 | 
						|
		const btScalar massInvA,
 | 
						|
		const btVector3& inertiaInvB,
 | 
						|
		const btScalar massInvB)
 | 
						|
		:m_linearJointAxis(jointAxis)
 | 
						|
	{
 | 
						|
		m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
 | 
						|
		m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
 | 
						|
		m_0MinvJt	= inertiaInvA * m_aJ;
 | 
						|
		m_1MinvJt = inertiaInvB * m_bJ;
 | 
						|
		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
 | 
						|
 | 
						|
		btAssert(m_Adiag > btScalar(0.0));
 | 
						|
	}
 | 
						|
 | 
						|
	//angular constraint between two different rigidbodies
 | 
						|
	btJacobianEntry(const btVector3& jointAxis,
 | 
						|
		const btMatrix3x3& world2A,
 | 
						|
		const btMatrix3x3& world2B,
 | 
						|
		const btVector3& inertiaInvA,
 | 
						|
		const btVector3& inertiaInvB)
 | 
						|
		:m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
 | 
						|
	{
 | 
						|
		m_aJ= world2A*jointAxis;
 | 
						|
		m_bJ = world2B*-jointAxis;
 | 
						|
		m_0MinvJt	= inertiaInvA * m_aJ;
 | 
						|
		m_1MinvJt = inertiaInvB * m_bJ;
 | 
						|
		m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
 | 
						|
 | 
						|
		btAssert(m_Adiag > btScalar(0.0));
 | 
						|
	}
 | 
						|
 | 
						|
	//angular constraint between two different rigidbodies
 | 
						|
	btJacobianEntry(const btVector3& axisInA,
 | 
						|
		const btVector3& axisInB,
 | 
						|
		const btVector3& inertiaInvA,
 | 
						|
		const btVector3& inertiaInvB)
 | 
						|
		: m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
 | 
						|
		, m_aJ(axisInA)
 | 
						|
		, m_bJ(-axisInB)
 | 
						|
	{
 | 
						|
		m_0MinvJt	= inertiaInvA * m_aJ;
 | 
						|
		m_1MinvJt = inertiaInvB * m_bJ;
 | 
						|
		m_Adiag =  m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
 | 
						|
 | 
						|
		btAssert(m_Adiag > btScalar(0.0));
 | 
						|
	}
 | 
						|
 | 
						|
	//constraint on one rigidbody
 | 
						|
	btJacobianEntry(
 | 
						|
		const btMatrix3x3& world2A,
 | 
						|
		const btVector3& rel_pos1,const btVector3& rel_pos2,
 | 
						|
		const btVector3& jointAxis,
 | 
						|
		const btVector3& inertiaInvA, 
 | 
						|
		const btScalar massInvA)
 | 
						|
		:m_linearJointAxis(jointAxis)
 | 
						|
	{
 | 
						|
		m_aJ= world2A*(rel_pos1.cross(jointAxis));
 | 
						|
		m_bJ = world2A*(rel_pos2.cross(-jointAxis));
 | 
						|
		m_0MinvJt	= inertiaInvA * m_aJ;
 | 
						|
		m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
 | 
						|
		m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
 | 
						|
 | 
						|
		btAssert(m_Adiag > btScalar(0.0));
 | 
						|
	}
 | 
						|
 | 
						|
	btScalar	getDiagonal() const { return m_Adiag; }
 | 
						|
 | 
						|
	// for two constraints on the same rigidbody (for example vehicle friction)
 | 
						|
	btScalar	getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const
 | 
						|
	{
 | 
						|
		const btJacobianEntry& jacA = *this;
 | 
						|
		btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
 | 
						|
		btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
 | 
						|
		return lin + ang;
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
 | 
						|
	btScalar	getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const
 | 
						|
	{
 | 
						|
		const btJacobianEntry& jacA = *this;
 | 
						|
		btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
 | 
						|
		btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
 | 
						|
		btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
 | 
						|
		btVector3 lin0 = massInvA * lin ;
 | 
						|
		btVector3 lin1 = massInvB * lin;
 | 
						|
		btVector3 sum = ang0+ang1+lin0+lin1;
 | 
						|
		return sum[0]+sum[1]+sum[2];
 | 
						|
	}
 | 
						|
 | 
						|
	btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB)
 | 
						|
	{
 | 
						|
		btVector3 linrel = linvelA - linvelB;
 | 
						|
		btVector3 angvela  = angvelA * m_aJ;
 | 
						|
		btVector3 angvelb  = angvelB * m_bJ;
 | 
						|
		linrel *= m_linearJointAxis;
 | 
						|
		angvela += angvelb;
 | 
						|
		angvela += linrel;
 | 
						|
		btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
 | 
						|
		return rel_vel2 + SIMD_EPSILON;
 | 
						|
	}
 | 
						|
//private:
 | 
						|
 | 
						|
	btVector3	m_linearJointAxis;
 | 
						|
	btVector3	m_aJ;
 | 
						|
	btVector3	m_bJ;
 | 
						|
	btVector3	m_0MinvJt;
 | 
						|
	btVector3	m_1MinvJt;
 | 
						|
	//Optimization: can be stored in the w/last component of one of the vectors
 | 
						|
	btScalar	m_Adiag;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
#endif //BT_JACOBIAN_ENTRY_H
 |