forked from LeenkxTeam/LNXSDK
407 lines
13 KiB
GLSL
407 lines
13 KiB
GLSL
//Transparent shadow implemented by Yvain Douard with reference:
|
|
//https://wickedengine.net/2018/01/easy-transparent-shadow-maps/comment-page-1/
|
|
|
|
#ifndef _SHADOWS_GLSL_
|
|
#define _SHADOWS_GLSL_
|
|
|
|
#include "compiled.inc"
|
|
|
|
#ifdef _CSM
|
|
uniform vec4 casData[shadowmapCascades * 4 + 4];
|
|
#endif
|
|
|
|
#ifdef _SMSizeUniform
|
|
uniform vec2 smSizeUniform;
|
|
#endif
|
|
|
|
#ifdef _ShadowMap
|
|
#ifdef _Clusters
|
|
#ifdef _ShadowMapAtlas
|
|
uniform vec4 pointLightDataArray[maxLightsCluster * 6];
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _ShadowMapAtlas
|
|
// https://www.khronos.org/registry/OpenGL/specs/gl/glspec20.pdf // p:168
|
|
// https://www.gamedev.net/forums/topic/687535-implementing-a-cube-map-lookup-function/5337472/
|
|
vec2 sampleCube(vec3 dir, out int faceIndex) {
|
|
vec3 dirAbs = abs(dir);
|
|
float ma;
|
|
vec2 uv;
|
|
if(dirAbs.z >= dirAbs.x && dirAbs.z >= dirAbs.y) {
|
|
faceIndex = dir.z < 0.0 ? 5 : 4;
|
|
ma = 0.5 / dirAbs.z;
|
|
uv = vec2(dir.z < 0.0 ? -dir.x : dir.x, -dir.y);
|
|
}
|
|
else if(dirAbs.y >= dirAbs.x) {
|
|
faceIndex = dir.y < 0.0 ? 3 : 2;
|
|
ma = 0.5 / dirAbs.y;
|
|
uv = vec2(dir.x, dir.y < 0.0 ? -dir.z : dir.z);
|
|
}
|
|
else {
|
|
faceIndex = dir.x < 0.0 ? 1 : 0;
|
|
ma = 0.5 / dirAbs.x;
|
|
uv = vec2(dir.x < 0.0 ? dir.z : -dir.z, -dir.y);
|
|
}
|
|
// downscale uv a little to hide seams
|
|
// transform coordinates from clip space to texture space
|
|
#ifndef _FlipY
|
|
return uv * 0.9976 * ma + 0.5;
|
|
#else
|
|
#ifdef HLSL
|
|
return uv * 0.9976 * ma + 0.5;
|
|
#else
|
|
return vec2(uv.x * ma, uv.y * -ma) * 0.9976 + 0.5;
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
vec3 PCF(sampler2DShadow shadowMap, sampler2D shadowMapTransparent, const vec2 uv, const float compare, const vec2 smSize, const bool transparent) {
|
|
vec3 result = vec3(0.0);
|
|
result.x = texture(shadowMap, vec3(uv + (vec2(-1.0, -1.0) / smSize), compare));
|
|
result.x += texture(shadowMap, vec3(uv + (vec2(-1.0, 0.0) / smSize), compare));
|
|
result.x += texture(shadowMap, vec3(uv + (vec2(-1.0, 1.0) / smSize), compare));
|
|
result.x += texture(shadowMap, vec3(uv + (vec2(0.0, -1.0) / smSize), compare));
|
|
result.x += texture(shadowMap, vec3(uv, compare));
|
|
result.x += texture(shadowMap, vec3(uv + (vec2(0.0, 1.0) / smSize), compare));
|
|
result.x += texture(shadowMap, vec3(uv + (vec2(1.0, -1.0) / smSize), compare));
|
|
result.x += texture(shadowMap, vec3(uv + (vec2(1.0, 0.0) / smSize), compare));
|
|
result.x += texture(shadowMap, vec3(uv + (vec2(1.0, 1.0) / smSize), compare));
|
|
result = result.xxx / 9.0;
|
|
|
|
if (transparent == false) {
|
|
vec4 shadowmap_transparent = texture(shadowMapTransparent, uv);
|
|
if (shadowmap_transparent.a < compare)
|
|
result *= shadowmap_transparent.rgb;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
float lpToDepth(vec3 lp, const vec2 lightProj) {
|
|
lp = abs(lp);
|
|
float zcomp = max(lp.x, max(lp.y, lp.z));
|
|
zcomp = lightProj.x - lightProj.y / zcomp;
|
|
return zcomp * 0.5 + 0.5;
|
|
}
|
|
|
|
vec3 PCFCube(samplerCubeShadow shadowMapCube, samplerCube shadowMapCubeTransparent, const vec3 lp, vec3 ml, const float bias, const vec2 lightProj, const vec3 n, const bool transparent) {
|
|
const float s = shadowmapCubePcfSize; // TODO: incorrect...
|
|
float compare = lpToDepth(lp, lightProj) - bias * 1.5;
|
|
ml = ml + n * bias * 20;
|
|
#ifdef _InvY
|
|
ml.y = -ml.y;
|
|
#endif
|
|
vec3 result = vec3(0.0);
|
|
result.x = texture(shadowMapCube, vec4(ml, compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(s, s, s), compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(-s, s, s), compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(s, -s, s), compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(s, s, -s), compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(-s, -s, s), compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(s, -s, -s), compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(-s, s, -s), compare));
|
|
result.x += texture(shadowMapCube, vec4(ml + vec3(-s, -s, -s), compare));
|
|
result = result.xxx / 9.0;
|
|
|
|
if (transparent == false) {
|
|
vec4 shadowmap_transparent = texture(shadowMapCubeTransparent, ml);
|
|
if (shadowmap_transparent.a < compare)
|
|
result *= shadowmap_transparent.rgb;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef _ShadowMapAtlas
|
|
// transform "out-of-bounds" coordinates to the correct face/coordinate system
|
|
// https://www.khronos.org/opengl/wiki/File:CubeMapAxes.png
|
|
vec2 transformOffsetedUV(const int faceIndex, out int newFaceIndex, vec2 uv) {
|
|
if (uv.x < 0.0) {
|
|
if (faceIndex == 0) { // X+
|
|
newFaceIndex = 4; // Z+
|
|
}
|
|
else if (faceIndex == 1) { // X-
|
|
newFaceIndex = 5; // Z-
|
|
}
|
|
else if (faceIndex == 2) { // Y+
|
|
newFaceIndex = 1; // X-
|
|
}
|
|
else if (faceIndex == 3) { // Y-
|
|
newFaceIndex = 1; // X-
|
|
}
|
|
else if (faceIndex == 4) { // Z+
|
|
newFaceIndex = 1; // X-
|
|
}
|
|
else { // Z-
|
|
newFaceIndex = 0; // X+
|
|
}
|
|
uv = vec2(1.0 + uv.x, uv.y);
|
|
}
|
|
else if (uv.x > 1.0) {
|
|
if (faceIndex == 0) { // X+
|
|
newFaceIndex = 5; // Z-
|
|
}
|
|
else if (faceIndex == 1) { // X-
|
|
newFaceIndex = 4; // Z+
|
|
}
|
|
else if (faceIndex == 2) { // Y+
|
|
newFaceIndex = 0; // X+
|
|
}
|
|
else if (faceIndex == 3) { // Y-
|
|
newFaceIndex = 0; // X+
|
|
}
|
|
else if (faceIndex == 4) { // Z+
|
|
newFaceIndex = 0; // X+
|
|
}
|
|
else { // Z-
|
|
newFaceIndex = 1; // X-
|
|
}
|
|
uv = vec2(1.0 - uv.x, uv.y);
|
|
}
|
|
else if (uv.y < 0.0) {
|
|
if (faceIndex == 0) { // X+
|
|
newFaceIndex = 2; // Y+
|
|
}
|
|
else if (faceIndex == 1) { // X-
|
|
newFaceIndex = 2; // Y+
|
|
}
|
|
else if (faceIndex == 2) { // Y+
|
|
newFaceIndex = 5; // Z-
|
|
}
|
|
else if (faceIndex == 3) { // Y-
|
|
newFaceIndex = 4; // Z+
|
|
}
|
|
else if (faceIndex == 4) { // Z+
|
|
newFaceIndex = 2; // Y+
|
|
}
|
|
else { // Z-
|
|
newFaceIndex = 2; // Y+
|
|
}
|
|
uv = vec2(uv.x, 1.0 + uv.y);
|
|
}
|
|
else if (uv.y > 1.0) {
|
|
if (faceIndex == 0) { // X+
|
|
newFaceIndex = 3; // Y-
|
|
}
|
|
else if (faceIndex == 1) { // X-
|
|
newFaceIndex = 3; // Y-
|
|
}
|
|
else if (faceIndex == 2) { // Y+
|
|
newFaceIndex = 4; // Z+
|
|
}
|
|
else if (faceIndex == 3) { // Y-
|
|
newFaceIndex = 5; // Z-
|
|
}
|
|
else if (faceIndex == 4) { // Z+
|
|
newFaceIndex = 3; // Y-
|
|
}
|
|
else { // Z-
|
|
newFaceIndex = 3; // Y-
|
|
}
|
|
uv = vec2(uv.x, 1.0 - uv.y);
|
|
} else {
|
|
newFaceIndex = faceIndex;
|
|
}
|
|
// cover corner cases too
|
|
return uv;
|
|
}
|
|
|
|
vec3 PCFFakeCube(sampler2DShadow shadowMap, sampler2D shadowMapTransparent, const vec3 lp, vec3 ml, const float bias, const vec2 lightProj, const vec3 n, const int index, const bool transparent) {
|
|
const vec2 smSize = smSizeUniform; // TODO: incorrect...
|
|
const float compare = lpToDepth(lp, lightProj) - bias * 1.5;
|
|
ml = ml + n * bias * 20;
|
|
|
|
int faceIndex = 0;
|
|
const int lightIndex = index * 6;
|
|
const vec2 uv = sampleCube(ml, faceIndex);
|
|
|
|
vec4 pointLightTile = pointLightDataArray[lightIndex + faceIndex]; // x: tile X offset, y: tile Y offset, z: tile size relative to atlas
|
|
vec2 uvtiled = pointLightTile.z * uv + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
|
|
vec3 result = vec3(0.0);
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
// soft shadowing
|
|
int newFaceIndex = 0;
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(-1.0, 0.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(-1.0, 1.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(0.0, -1.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(-1.0, -1.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(0.0, 1.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(1.0, -1.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(1.0, 0.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
uvtiled = transformOffsetedUV(faceIndex, newFaceIndex, vec2(uv + (vec2(1.0, 1.0) / smSize)));
|
|
pointLightTile = pointLightDataArray[lightIndex + newFaceIndex];
|
|
uvtiled = pointLightTile.z * uvtiled + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
result.x += texture(shadowMap, vec3(uvtiled, compare));
|
|
|
|
result = result.xxx / 9.0;
|
|
|
|
pointLightTile = pointLightDataArray[lightIndex + faceIndex]; // x: tile X offset, y: tile Y offset, z: tile size relative to atlas
|
|
uvtiled = pointLightTile.z * uv + pointLightTile.xy;
|
|
#ifdef _FlipY
|
|
uvtiled.y = 1.0 - uvtiled.y; // invert Y coordinates for direct3d coordinate system
|
|
#endif
|
|
|
|
if (transparent == false) {
|
|
vec4 shadowmap_transparent = texture(shadowMapTransparent, uvtiled);
|
|
if (shadowmap_transparent.a < compare)
|
|
result *= shadowmap_transparent.rgb;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
vec3 shadowTest(sampler2DShadow shadowMap, sampler2D shadowMapTransparent, const vec3 lPos, const float shadowsBias, const bool transparent) {
|
|
#ifdef _SMSizeUniform
|
|
vec2 smSize = smSizeUniform;
|
|
#else
|
|
const vec2 smSize = shadowmapSize;
|
|
#endif
|
|
if (lPos.x < 0.0 || lPos.y < 0.0 || lPos.x > 1.0 || lPos.y > 1.0) return vec3(1.0);
|
|
return PCF(shadowMap, shadowMapTransparent, lPos.xy, lPos.z - shadowsBias, smSize, transparent);
|
|
}
|
|
|
|
#ifdef _CSM
|
|
mat4 getCascadeMat(const float d, out int casi, out int casIndex) {
|
|
const int c = shadowmapCascades;
|
|
|
|
// Get cascade index
|
|
// TODO: use bounding box slice selection instead of sphere
|
|
const vec4 ci = vec4(float(c > 0), float(c > 1), float(c > 2), float(c > 3));
|
|
// int ci;
|
|
// if (d < casData[c * 4].x) ci = 0;
|
|
// else if (d < casData[c * 4].y) ci = 1 * 4;
|
|
// else if (d < casData[c * 4].z) ci = 2 * 4;
|
|
// else ci = 3 * 4;
|
|
// Splits
|
|
vec4 comp = vec4(
|
|
float(d > casData[c * 4].x),
|
|
float(d > casData[c * 4].y),
|
|
float(d > casData[c * 4].z),
|
|
float(d > casData[c * 4].w));
|
|
casi = int(min(dot(ci, comp), c));
|
|
|
|
// Get cascade mat
|
|
casIndex = casi * 4;
|
|
|
|
return mat4(
|
|
casData[casIndex ],
|
|
casData[casIndex + 1],
|
|
casData[casIndex + 2],
|
|
casData[casIndex + 3]);
|
|
|
|
// if (casIndex == 0) return mat4(casData[0], casData[1], casData[2], casData[3]);
|
|
// ..
|
|
}
|
|
|
|
vec3 shadowTestCascade(sampler2DShadow shadowMap, sampler2D shadowMapTransparent, const vec3 eye, const vec3 p, const float shadowsBias, const bool transparent) {
|
|
#ifdef _SMSizeUniform
|
|
vec2 smSize = smSizeUniform;
|
|
#else
|
|
const vec2 smSize = shadowmapSize * vec2(shadowmapCascades, 1.0);
|
|
#endif
|
|
const int c = shadowmapCascades;
|
|
float d = distance(eye, p);
|
|
|
|
int casi;
|
|
int casIndex;
|
|
mat4 LWVP = getCascadeMat(d, casi, casIndex);
|
|
|
|
vec4 lPos = LWVP * vec4(p, 1.0);
|
|
lPos.xyz /= lPos.w;
|
|
|
|
vec3 visibility = vec3(1.0);
|
|
if (lPos.w > 0.0) visibility = PCF(shadowMap, shadowMapTransparent, lPos.xy, lPos.z - shadowsBias, smSize, transparent);
|
|
|
|
// Blend cascade
|
|
// https://github.com/TheRealMJP/Shadows
|
|
const float blendThres = 0.15;
|
|
float nextSplit = casData[c * 4][casi];
|
|
float splitSize = casi == 0 ? nextSplit : nextSplit - casData[c * 4][casi - 1];
|
|
float splitDist = (nextSplit - d) / splitSize;
|
|
if (splitDist <= blendThres && casi != c - 1) {
|
|
int casIndex2 = casIndex + 4;
|
|
mat4 LWVP2 = mat4(
|
|
casData[casIndex2 ],
|
|
casData[casIndex2 + 1],
|
|
casData[casIndex2 + 2],
|
|
casData[casIndex2 + 3]);
|
|
|
|
vec4 lPos2 = LWVP2 * vec4(p, 1.0);
|
|
lPos2.xyz /= lPos2.w;
|
|
vec3 visibility2 = vec3(1.0);
|
|
if (lPos2.w > 0.0) visibility2 = PCF(shadowMap, shadowMapTransparent, lPos2.xy, lPos2.z - shadowsBias, smSize, transparent);
|
|
|
|
float lerpAmt = smoothstep(0.0, blendThres, splitDist);
|
|
return mix(visibility2, visibility, lerpAmt);
|
|
}
|
|
return visibility;
|
|
|
|
// Visualize cascades
|
|
// if (ci == 0) albedo.rgb = vec3(1.0, 0.0, 0.0);
|
|
// if (ci == 4) albedo.rgb = vec3(0.0, 1.0, 0.0);
|
|
// if (ci == 8) albedo.rgb = vec3(0.0, 0.0, 1.0);
|
|
// if (ci == 12) albedo.rgb = vec3(1.0, 1.0, 0.0);
|
|
}
|
|
#endif
|
|
#endif
|