forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			1398 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1398 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include "btQuantizedBvh.h"
 | |
| 
 | |
| #include "LinearMath/btAabbUtil2.h"
 | |
| #include "LinearMath/btIDebugDraw.h"
 | |
| #include "LinearMath/btSerializer.h"
 | |
| 
 | |
| #define RAYAABB2
 | |
| 
 | |
| btQuantizedBvh::btQuantizedBvh() : 
 | |
| 					m_bulletVersion(BT_BULLET_VERSION),
 | |
| 					m_useQuantization(false), 
 | |
| 					//m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY)
 | |
| 					m_traversalMode(TRAVERSAL_STACKLESS)
 | |
| 					//m_traversalMode(TRAVERSAL_RECURSIVE)
 | |
| 					,m_subtreeHeaderCount(0) //PCK: add this line
 | |
| {
 | |
| 	m_bvhAabbMin.setValue(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY);
 | |
| 	m_bvhAabbMax.setValue(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void btQuantizedBvh::buildInternal()
 | |
| {
 | |
| 	///assumes that caller filled in the m_quantizedLeafNodes
 | |
| 	m_useQuantization = true;
 | |
| 	int numLeafNodes = 0;
 | |
| 	
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 		//now we have an array of leafnodes in m_leafNodes
 | |
| 		numLeafNodes = m_quantizedLeafNodes.size();
 | |
| 
 | |
| 		m_quantizedContiguousNodes.resize(2*numLeafNodes);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	m_curNodeIndex = 0;
 | |
| 
 | |
| 	buildTree(0,numLeafNodes);
 | |
| 
 | |
| 	///if the entire tree is small then subtree size, we need to create a header info for the tree
 | |
| 	if(m_useQuantization && !m_SubtreeHeaders.size())
 | |
| 	{
 | |
| 		btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
 | |
| 		subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
 | |
| 		subtree.m_rootNodeIndex = 0;
 | |
| 		subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
 | |
| 	}
 | |
| 
 | |
| 	//PCK: update the copy of the size
 | |
| 	m_subtreeHeaderCount = m_SubtreeHeaders.size();
 | |
| 
 | |
| 	//PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary
 | |
| 	m_quantizedLeafNodes.clear();
 | |
| 	m_leafNodes.clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| ///just for debugging, to visualize the individual patches/subtrees
 | |
| #ifdef DEBUG_PATCH_COLORS
 | |
| btVector3 color[4]=
 | |
| {
 | |
| 	btVector3(1,0,0),
 | |
| 	btVector3(0,1,0),
 | |
| 	btVector3(0,0,1),
 | |
| 	btVector3(0,1,1)
 | |
| };
 | |
| #endif //DEBUG_PATCH_COLORS
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin)
 | |
| {
 | |
| 	//enlarge the AABB to avoid division by zero when initializing the quantization values
 | |
| 	btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin);
 | |
| 	m_bvhAabbMin = bvhAabbMin - clampValue;
 | |
| 	m_bvhAabbMax = bvhAabbMax + clampValue;
 | |
| 	btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin;
 | |
| 	m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize;
 | |
| 
 | |
| 	m_useQuantization = true;
 | |
| 
 | |
| 	{
 | |
| 		unsigned short vecIn[3];
 | |
| 		btVector3 v;
 | |
| 		{
 | |
| 			quantize(vecIn,m_bvhAabbMin,false);
 | |
| 			v = unQuantize(vecIn);
 | |
| 			m_bvhAabbMin.setMin(v-clampValue);
 | |
| 		}
 | |
|         aabbSize = m_bvhAabbMax - m_bvhAabbMin;
 | |
|         m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize;
 | |
| 		{
 | |
| 			quantize(vecIn,m_bvhAabbMax,true);
 | |
| 			v = unQuantize(vecIn);
 | |
| 			m_bvhAabbMax.setMax(v+clampValue);
 | |
| 		}
 | |
| 		aabbSize = m_bvhAabbMax - m_bvhAabbMin;
 | |
| 		m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| btQuantizedBvh::~btQuantizedBvh()
 | |
| {
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG_TREE_BUILDING
 | |
| int gStackDepth = 0;
 | |
| int gMaxStackDepth = 0;
 | |
| #endif //DEBUG_TREE_BUILDING
 | |
| 
 | |
| void	btQuantizedBvh::buildTree	(int startIndex,int endIndex)
 | |
| {
 | |
| #ifdef DEBUG_TREE_BUILDING
 | |
| 	gStackDepth++;
 | |
| 	if (gStackDepth > gMaxStackDepth)
 | |
| 		gMaxStackDepth = gStackDepth;
 | |
| #endif //DEBUG_TREE_BUILDING
 | |
| 
 | |
| 
 | |
| 	int splitAxis, splitIndex, i;
 | |
| 	int numIndices =endIndex-startIndex;
 | |
| 	int curIndex = m_curNodeIndex;
 | |
| 
 | |
| 	btAssert(numIndices>0);
 | |
| 
 | |
| 	if (numIndices==1)
 | |
| 	{
 | |
| #ifdef DEBUG_TREE_BUILDING
 | |
| 		gStackDepth--;
 | |
| #endif //DEBUG_TREE_BUILDING
 | |
| 		
 | |
| 		assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex);
 | |
| 
 | |
| 		m_curNodeIndex++;
 | |
| 		return;	
 | |
| 	}
 | |
| 	//calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.
 | |
| 	
 | |
| 	splitAxis = calcSplittingAxis(startIndex,endIndex);
 | |
| 
 | |
| 	splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis);
 | |
| 
 | |
| 	int internalNodeIndex = m_curNodeIndex;
 | |
| 	
 | |
| 	//set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value.
 | |
| 	//the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values
 | |
| 	setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);//can't use btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY)) because of quantization
 | |
| 	setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);//can't use btVector3(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY)) because of quantization
 | |
| 	
 | |
| 	
 | |
| 	for (i=startIndex;i<endIndex;i++)
 | |
| 	{
 | |
| 		mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i));
 | |
| 	}
 | |
| 
 | |
| 	m_curNodeIndex++;
 | |
| 	
 | |
| 
 | |
| 	//internalNode->m_escapeIndex;
 | |
| 	
 | |
| 	int leftChildNodexIndex = m_curNodeIndex;
 | |
| 
 | |
| 	//build left child tree
 | |
| 	buildTree(startIndex,splitIndex);
 | |
| 
 | |
| 	int rightChildNodexIndex = m_curNodeIndex;
 | |
| 	//build right child tree
 | |
| 	buildTree(splitIndex,endIndex);
 | |
| 
 | |
| #ifdef DEBUG_TREE_BUILDING
 | |
| 	gStackDepth--;
 | |
| #endif //DEBUG_TREE_BUILDING
 | |
| 
 | |
| 	int escapeIndex = m_curNodeIndex - curIndex;
 | |
| 
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 		//escapeIndex is the number of nodes of this subtree
 | |
| 		const int sizeQuantizedNode =sizeof(btQuantizedBvhNode);
 | |
| 		const int treeSizeInBytes = escapeIndex * sizeQuantizedNode;
 | |
| 		if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES)
 | |
| 		{
 | |
| 			updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex);
 | |
| 		}
 | |
| 	} else
 | |
| 	{
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex);
 | |
| 
 | |
| }
 | |
| 
 | |
| void	btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex)
 | |
| {
 | |
| 	btAssert(m_useQuantization);
 | |
| 
 | |
| 	btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex];
 | |
| 	int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex();
 | |
| 	int leftSubTreeSizeInBytes =  leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode));
 | |
| 	
 | |
| 	btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex];
 | |
| 	int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex();
 | |
| 	int rightSubTreeSizeInBytes =  rightSubTreeSize *  static_cast<int>(sizeof(btQuantizedBvhNode));
 | |
| 
 | |
| 	if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
 | |
| 	{
 | |
| 		btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
 | |
| 		subtree.setAabbFromQuantizeNode(leftChildNode);
 | |
| 		subtree.m_rootNodeIndex = leftChildNodexIndex;
 | |
| 		subtree.m_subtreeSize = leftSubTreeSize;
 | |
| 	}
 | |
| 
 | |
| 	if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
 | |
| 	{
 | |
| 		btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
 | |
| 		subtree.setAabbFromQuantizeNode(rightChildNode);
 | |
| 		subtree.m_rootNodeIndex = rightChildNodexIndex;
 | |
| 		subtree.m_subtreeSize = rightSubTreeSize;
 | |
| 	}
 | |
| 
 | |
| 	//PCK: update the copy of the size
 | |
| 	m_subtreeHeaderCount = m_SubtreeHeaders.size();
 | |
| }
 | |
| 
 | |
| 
 | |
| int	btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis)
 | |
| {
 | |
| 	int i;
 | |
| 	int splitIndex =startIndex;
 | |
| 	int numIndices = endIndex - startIndex;
 | |
| 	btScalar splitValue;
 | |
| 
 | |
| 	btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 	for (i=startIndex;i<endIndex;i++)
 | |
| 	{
 | |
| 		btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
 | |
| 		means+=center;
 | |
| 	}
 | |
| 	means *= (btScalar(1.)/(btScalar)numIndices);
 | |
| 	
 | |
| 	splitValue = means[splitAxis];
 | |
| 	
 | |
| 	//sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
 | |
| 	for (i=startIndex;i<endIndex;i++)
 | |
| 	{
 | |
| 		btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
 | |
| 		if (center[splitAxis] > splitValue)
 | |
| 		{
 | |
| 			//swap
 | |
| 			swapLeafNodes(i,splitIndex);
 | |
| 			splitIndex++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex
 | |
| 	//otherwise the tree-building might fail due to stack-overflows in certain cases.
 | |
| 	//unbalanced1 is unsafe: it can cause stack overflows
 | |
| 	//bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));
 | |
| 
 | |
| 	//unbalanced2 should work too: always use center (perfect balanced trees)	
 | |
| 	//bool unbalanced2 = true;
 | |
| 
 | |
| 	//this should be safe too:
 | |
| 	int rangeBalancedIndices = numIndices/3;
 | |
| 	bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));
 | |
| 	
 | |
| 	if (unbalanced)
 | |
| 	{
 | |
| 		splitIndex = startIndex+ (numIndices>>1);
 | |
| 	}
 | |
| 
 | |
| 	bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex));
 | |
| 	(void)unbal;
 | |
| 	btAssert(!unbal);
 | |
| 
 | |
| 	return splitIndex;
 | |
| }
 | |
| 
 | |
| 
 | |
| int	btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 	btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 	int numIndices = endIndex-startIndex;
 | |
| 
 | |
| 	for (i=startIndex;i<endIndex;i++)
 | |
| 	{
 | |
| 		btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
 | |
| 		means+=center;
 | |
| 	}
 | |
| 	means *= (btScalar(1.)/(btScalar)numIndices);
 | |
| 		
 | |
| 	for (i=startIndex;i<endIndex;i++)
 | |
| 	{
 | |
| 		btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
 | |
| 		btVector3 diff2 = center-means;
 | |
| 		diff2 = diff2 * diff2;
 | |
| 		variance += diff2;
 | |
| 	}
 | |
| 	variance *= (btScalar(1.)/	((btScalar)numIndices-1)	);
 | |
| 	
 | |
| 	return variance.maxAxis();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
 | |
| {
 | |
| 	//either choose recursive traversal (walkTree) or stackless (walkStacklessTree)
 | |
| 
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 		///quantize query AABB
 | |
| 		unsigned short int quantizedQueryAabbMin[3];
 | |
| 		unsigned short int quantizedQueryAabbMax[3];
 | |
| 		quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0);
 | |
| 		quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1);
 | |
| 
 | |
| 		switch (m_traversalMode)
 | |
| 		{
 | |
| 		case TRAVERSAL_STACKLESS:
 | |
| 				walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex);
 | |
| 			break;
 | |
| 		case TRAVERSAL_STACKLESS_CACHE_FRIENDLY:
 | |
| 				walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
 | |
| 			break;
 | |
| 		case TRAVERSAL_RECURSIVE:
 | |
| 			{
 | |
| 				const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0];
 | |
| 				walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			//unsupported
 | |
| 			btAssert(0);
 | |
| 		}
 | |
| 	} else
 | |
| 	{
 | |
| 		walkStacklessTree(nodeCallback,aabbMin,aabbMax);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| int maxIterations = 0;
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
 | |
| {
 | |
| 	btAssert(!m_useQuantization);
 | |
| 
 | |
| 	const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0];
 | |
| 	int escapeIndex, curIndex = 0;
 | |
| 	int walkIterations = 0;
 | |
| 	bool isLeafNode;
 | |
| 	//PCK: unsigned instead of bool
 | |
| 	unsigned aabbOverlap;
 | |
| 
 | |
| 	while (curIndex < m_curNodeIndex)
 | |
| 	{
 | |
| 		//catch bugs in tree data
 | |
| 		btAssert (walkIterations < m_curNodeIndex);
 | |
| 
 | |
| 		walkIterations++;
 | |
| 		aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg);
 | |
| 		isLeafNode = rootNode->m_escapeIndex == -1;
 | |
| 		
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		if (isLeafNode && (aabbOverlap != 0))
 | |
| 		{
 | |
| 			nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex);
 | |
| 		} 
 | |
| 		
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		if ((aabbOverlap != 0) || isLeafNode)
 | |
| 		{
 | |
| 			rootNode++;
 | |
| 			curIndex++;
 | |
| 		} else
 | |
| 		{
 | |
| 			escapeIndex = rootNode->m_escapeIndex;
 | |
| 			rootNode += escapeIndex;
 | |
| 			curIndex += escapeIndex;
 | |
| 		}
 | |
| 	}
 | |
| 	if (maxIterations < walkIterations)
 | |
| 		maxIterations = walkIterations;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ///this was the original recursive traversal, before we optimized towards stackless traversal
 | |
| void	btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
 | |
| {
 | |
| 	bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax);
 | |
| 	if (aabbOverlap)
 | |
| 	{
 | |
| 		isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild);
 | |
| 		if (isLeafNode)
 | |
| 		{
 | |
| 			nodeCallback->processNode(rootNode);
 | |
| 		} else
 | |
| 		{
 | |
| 			walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax);
 | |
| 			walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| }
 | |
| */
 | |
| 
 | |
| void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
 | |
| {
 | |
| 	btAssert(m_useQuantization);
 | |
| 	
 | |
| 	bool isLeafNode;
 | |
| 	//PCK: unsigned instead of bool
 | |
| 	unsigned aabbOverlap;
 | |
| 
 | |
| 	//PCK: unsigned instead of bool
 | |
| 	aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax);
 | |
| 	isLeafNode = currentNode->isLeafNode();
 | |
| 		
 | |
| 	//PCK: unsigned instead of bool
 | |
| 	if (aabbOverlap != 0)
 | |
| 	{
 | |
| 		if (isLeafNode)
 | |
| 		{
 | |
| 			nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex());
 | |
| 		} else
 | |
| 		{
 | |
| 			//process left and right children
 | |
| 			const btQuantizedBvhNode* leftChildNode = currentNode+1;
 | |
| 			walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
 | |
| 
 | |
| 			const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex();
 | |
| 			walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
 | |
| 		}
 | |
| 	}		
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const
 | |
| {
 | |
| 	btAssert(!m_useQuantization);
 | |
| 
 | |
| 	const btOptimizedBvhNode* rootNode = &m_contiguousNodes[0];
 | |
| 	int escapeIndex, curIndex = 0;
 | |
| 	int walkIterations = 0;
 | |
| 	bool isLeafNode;
 | |
| 	//PCK: unsigned instead of bool
 | |
| 	unsigned aabbOverlap=0;
 | |
| 	unsigned rayBoxOverlap=0;
 | |
| 	btScalar lambda_max = 1.0;
 | |
| 	
 | |
| 		/* Quick pruning by quantized box */
 | |
| 	btVector3 rayAabbMin = raySource;
 | |
| 	btVector3 rayAabbMax = raySource;
 | |
| 	rayAabbMin.setMin(rayTarget);
 | |
| 	rayAabbMax.setMax(rayTarget);
 | |
| 
 | |
| 	/* Add box cast extents to bounding box */
 | |
| 	rayAabbMin += aabbMin;
 | |
| 	rayAabbMax += aabbMax;
 | |
| 
 | |
| #ifdef RAYAABB2
 | |
| 	btVector3 rayDir = (rayTarget-raySource);
 | |
| 	rayDir.normalize ();
 | |
| 	lambda_max = rayDir.dot(rayTarget-raySource);
 | |
| 	///what about division by zero? --> just set rayDirection[i] to 1.0
 | |
| 	btVector3 rayDirectionInverse;
 | |
| 	rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
 | |
| 	rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
 | |
| 	rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
 | |
| 	unsigned int sign[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0};
 | |
| #endif
 | |
| 
 | |
| 	btVector3 bounds[2];
 | |
| 
 | |
| 	while (curIndex < m_curNodeIndex)
 | |
| 	{
 | |
| 		btScalar param = 1.0;
 | |
| 		//catch bugs in tree data
 | |
| 		btAssert (walkIterations < m_curNodeIndex);
 | |
| 
 | |
| 		walkIterations++;
 | |
| 
 | |
| 		bounds[0] = rootNode->m_aabbMinOrg;
 | |
| 		bounds[1] = rootNode->m_aabbMaxOrg;
 | |
| 		/* Add box cast extents */
 | |
| 		bounds[0] -= aabbMax;
 | |
| 		bounds[1] -= aabbMin;
 | |
| 
 | |
| 		aabbOverlap = TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg);
 | |
| 		//perhaps profile if it is worth doing the aabbOverlap test first
 | |
| 
 | |
| #ifdef RAYAABB2
 | |
| 			///careful with this check: need to check division by zero (above) and fix the unQuantize method
 | |
| 			///thanks Joerg/hiker for the reproduction case!
 | |
| 			///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858
 | |
| 		rayBoxOverlap = aabbOverlap ? btRayAabb2 (raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false;
 | |
| 
 | |
| #else
 | |
| 		btVector3 normal;
 | |
| 		rayBoxOverlap = btRayAabb(raySource, rayTarget,bounds[0],bounds[1],param, normal);
 | |
| #endif
 | |
| 
 | |
| 		isLeafNode = rootNode->m_escapeIndex == -1;
 | |
| 		
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		if (isLeafNode && (rayBoxOverlap != 0))
 | |
| 		{
 | |
| 			nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex);
 | |
| 		} 
 | |
| 		
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		if ((rayBoxOverlap != 0) || isLeafNode)
 | |
| 		{
 | |
| 			rootNode++;
 | |
| 			curIndex++;
 | |
| 		} else
 | |
| 		{
 | |
| 			escapeIndex = rootNode->m_escapeIndex;
 | |
| 			rootNode += escapeIndex;
 | |
| 			curIndex += escapeIndex;
 | |
| 		}
 | |
| 	}
 | |
| 	if (maxIterations < walkIterations)
 | |
| 		maxIterations = walkIterations;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const
 | |
| {
 | |
| 	btAssert(m_useQuantization);
 | |
| 	
 | |
| 	int curIndex = startNodeIndex;
 | |
| 	int walkIterations = 0;
 | |
| 	int subTreeSize = endNodeIndex - startNodeIndex;
 | |
| 	(void)subTreeSize;
 | |
| 
 | |
| 	const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
 | |
| 	int escapeIndex;
 | |
| 	
 | |
| 	bool isLeafNode;
 | |
| 	//PCK: unsigned instead of bool
 | |
| 	unsigned boxBoxOverlap = 0;
 | |
| 	unsigned rayBoxOverlap = 0;
 | |
| 
 | |
| 	btScalar lambda_max = 1.0;
 | |
| 
 | |
| #ifdef RAYAABB2
 | |
| 	btVector3 rayDirection = (rayTarget-raySource);
 | |
| 	rayDirection.normalize ();
 | |
| 	lambda_max = rayDirection.dot(rayTarget-raySource);
 | |
| 	///what about division by zero? --> just set rayDirection[i] to 1.0
 | |
| 	rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[0];
 | |
| 	rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[1];
 | |
| 	rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[2];
 | |
| 	unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0};
 | |
| #endif
 | |
| 
 | |
| 	/* Quick pruning by quantized box */
 | |
| 	btVector3 rayAabbMin = raySource;
 | |
| 	btVector3 rayAabbMax = raySource;
 | |
| 	rayAabbMin.setMin(rayTarget);
 | |
| 	rayAabbMax.setMax(rayTarget);
 | |
| 
 | |
| 	/* Add box cast extents to bounding box */
 | |
| 	rayAabbMin += aabbMin;
 | |
| 	rayAabbMax += aabbMax;
 | |
| 
 | |
| 	unsigned short int quantizedQueryAabbMin[3];
 | |
| 	unsigned short int quantizedQueryAabbMax[3];
 | |
| 	quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0);
 | |
| 	quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1);
 | |
| 
 | |
| 	while (curIndex < endNodeIndex)
 | |
| 	{
 | |
| 
 | |
| //#define VISUALLY_ANALYZE_BVH 1
 | |
| #ifdef VISUALLY_ANALYZE_BVH
 | |
| 		//some code snippet to debugDraw aabb, to visually analyze bvh structure
 | |
| 		static int drawPatch = 0;
 | |
| 		//need some global access to a debugDrawer
 | |
| 		extern btIDebugDraw* debugDrawerPtr;
 | |
| 		if (curIndex==drawPatch)
 | |
| 		{
 | |
| 			btVector3 aabbMin,aabbMax;
 | |
| 			aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
 | |
| 			aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
 | |
| 			btVector3	color(1,0,0);
 | |
| 			debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
 | |
| 		}
 | |
| #endif//VISUALLY_ANALYZE_BVH
 | |
| 
 | |
| 		//catch bugs in tree data
 | |
| 		btAssert (walkIterations < subTreeSize);
 | |
| 
 | |
| 		walkIterations++;
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		// only interested if this is closer than any previous hit
 | |
| 		btScalar param = 1.0;
 | |
| 		rayBoxOverlap = 0;
 | |
| 		boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
 | |
| 		isLeafNode = rootNode->isLeafNode();
 | |
| 		if (boxBoxOverlap)
 | |
| 		{
 | |
| 			btVector3 bounds[2];
 | |
| 			bounds[0] = unQuantize(rootNode->m_quantizedAabbMin);
 | |
| 			bounds[1] = unQuantize(rootNode->m_quantizedAabbMax);
 | |
| 			/* Add box cast extents */
 | |
| 			bounds[0] -= aabbMax;
 | |
| 			bounds[1] -= aabbMin;
 | |
| 			btVector3 normal;
 | |
| #if 0
 | |
| 			bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max);
 | |
| 			bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal);
 | |
| 			if (ra2 != ra)
 | |
| 			{
 | |
| 				printf("functions don't match\n");
 | |
| 			}
 | |
| #endif
 | |
| #ifdef RAYAABB2
 | |
| 			///careful with this check: need to check division by zero (above) and fix the unQuantize method
 | |
| 			///thanks Joerg/hiker for the reproduction case!
 | |
| 			///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858
 | |
| 
 | |
| 			//BT_PROFILE("btRayAabb2");
 | |
| 			rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max);
 | |
| 			
 | |
| #else
 | |
| 			rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
 | |
| #endif
 | |
| 		}
 | |
| 		
 | |
| 		if (isLeafNode && rayBoxOverlap)
 | |
| 		{
 | |
| 			nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex());
 | |
| 		}
 | |
| 		
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		if ((rayBoxOverlap != 0) || isLeafNode)
 | |
| 		{
 | |
| 			rootNode++;
 | |
| 			curIndex++;
 | |
| 		} else
 | |
| 		{
 | |
| 			escapeIndex = rootNode->getEscapeIndex();
 | |
| 			rootNode += escapeIndex;
 | |
| 			curIndex += escapeIndex;
 | |
| 		}
 | |
| 	}
 | |
| 	if (maxIterations < walkIterations)
 | |
| 		maxIterations = walkIterations;
 | |
| 
 | |
| }
 | |
| 
 | |
| void	btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const
 | |
| {
 | |
| 	btAssert(m_useQuantization);
 | |
| 	
 | |
| 	int curIndex = startNodeIndex;
 | |
| 	int walkIterations = 0;
 | |
| 	int subTreeSize = endNodeIndex - startNodeIndex;
 | |
| 	(void)subTreeSize;
 | |
| 
 | |
| 	const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
 | |
| 	int escapeIndex;
 | |
| 	
 | |
| 	bool isLeafNode;
 | |
| 	//PCK: unsigned instead of bool
 | |
| 	unsigned aabbOverlap;
 | |
| 
 | |
| 	while (curIndex < endNodeIndex)
 | |
| 	{
 | |
| 
 | |
| //#define VISUALLY_ANALYZE_BVH 1
 | |
| #ifdef VISUALLY_ANALYZE_BVH
 | |
| 		//some code snippet to debugDraw aabb, to visually analyze bvh structure
 | |
| 		static int drawPatch = 0;
 | |
| 		//need some global access to a debugDrawer
 | |
| 		extern btIDebugDraw* debugDrawerPtr;
 | |
| 		if (curIndex==drawPatch)
 | |
| 		{
 | |
| 			btVector3 aabbMin,aabbMax;
 | |
| 			aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
 | |
| 			aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
 | |
| 			btVector3	color(1,0,0);
 | |
| 			debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
 | |
| 		}
 | |
| #endif//VISUALLY_ANALYZE_BVH
 | |
| 
 | |
| 		//catch bugs in tree data
 | |
| 		btAssert (walkIterations < subTreeSize);
 | |
| 
 | |
| 		walkIterations++;
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
 | |
| 		isLeafNode = rootNode->isLeafNode();
 | |
| 		
 | |
| 		if (isLeafNode && aabbOverlap)
 | |
| 		{
 | |
| 			nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex());
 | |
| 		} 
 | |
| 		
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		if ((aabbOverlap != 0) || isLeafNode)
 | |
| 		{
 | |
| 			rootNode++;
 | |
| 			curIndex++;
 | |
| 		} else
 | |
| 		{
 | |
| 			escapeIndex = rootNode->getEscapeIndex();
 | |
| 			rootNode += escapeIndex;
 | |
| 			curIndex += escapeIndex;
 | |
| 		}
 | |
| 	}
 | |
| 	if (maxIterations < walkIterations)
 | |
| 		maxIterations = walkIterations;
 | |
| 
 | |
| }
 | |
| 
 | |
| //This traversal can be called from Playstation 3 SPU
 | |
| void	btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
 | |
| {
 | |
| 	btAssert(m_useQuantization);
 | |
| 
 | |
| 	int i;
 | |
| 
 | |
| 
 | |
| 	for (i=0;i<this->m_SubtreeHeaders.size();i++)
 | |
| 	{
 | |
| 		const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
 | |
| 
 | |
| 		//PCK: unsigned instead of bool
 | |
| 		unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
 | |
| 		if (overlap != 0)
 | |
| 		{
 | |
| 			walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
 | |
| 				subtree.m_rootNodeIndex,
 | |
| 				subtree.m_rootNodeIndex+subtree.m_subtreeSize);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const
 | |
| {
 | |
| 	reportBoxCastOverlappingNodex(nodeCallback,raySource,rayTarget,btVector3(0,0,0),btVector3(0,0,0));
 | |
| }
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const
 | |
| {
 | |
| 	//always use stackless
 | |
| 
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 		walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		walkStacklessTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex);
 | |
| 	}
 | |
| 	/*
 | |
| 	{
 | |
| 		//recursive traversal
 | |
| 		btVector3 qaabbMin = raySource;
 | |
| 		btVector3 qaabbMax = raySource;
 | |
| 		qaabbMin.setMin(rayTarget);
 | |
| 		qaabbMax.setMax(rayTarget);
 | |
| 		qaabbMin += aabbMin;
 | |
| 		qaabbMax += aabbMax;
 | |
| 		reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax);
 | |
| 	}
 | |
| 	*/
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void	btQuantizedBvh::swapLeafNodes(int i,int splitIndex)
 | |
| {
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 			btQuantizedBvhNode tmp = m_quantizedLeafNodes[i];
 | |
| 			m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex];
 | |
| 			m_quantizedLeafNodes[splitIndex] = tmp;
 | |
| 	} else
 | |
| 	{
 | |
| 			btOptimizedBvhNode tmp = m_leafNodes[i];
 | |
| 			m_leafNodes[i] = m_leafNodes[splitIndex];
 | |
| 			m_leafNodes[splitIndex] = tmp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void	btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex)
 | |
| {
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 		m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex];
 | |
| 	} else
 | |
| 	{
 | |
| 		m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //PCK: include
 | |
| #include <new>
 | |
| 
 | |
| #if 0
 | |
| //PCK: consts
 | |
| static const unsigned BVH_ALIGNMENT = 16;
 | |
| static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1;
 | |
| 
 | |
| static const unsigned BVH_ALIGNMENT_BLOCKS = 2;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| unsigned int btQuantizedBvh::getAlignmentSerializationPadding()
 | |
| {
 | |
| 	// I changed this to 0 since the extra padding is not needed or used.
 | |
| 	return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT;
 | |
| }
 | |
| 
 | |
| unsigned btQuantizedBvh::calculateSerializeBufferSize() const
 | |
| {
 | |
| 	unsigned baseSize = sizeof(btQuantizedBvh) + getAlignmentSerializationPadding();
 | |
| 	baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount;
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 		return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode);
 | |
| 	}
 | |
| 	return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode);
 | |
| }
 | |
| 
 | |
| bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const
 | |
| {
 | |
| 	btAssert(m_subtreeHeaderCount == m_SubtreeHeaders.size());
 | |
| 	m_subtreeHeaderCount = m_SubtreeHeaders.size();
 | |
| 
 | |
| /*	if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
 | |
| 	{
 | |
| 		///check alignedment for buffer?
 | |
| 		btAssert(0);
 | |
| 		return false;
 | |
| 	}
 | |
| */
 | |
| 
 | |
| 	btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer;
 | |
| 
 | |
| 	// construct the class so the virtual function table, etc will be set up
 | |
| 	// Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor
 | |
| 	new (targetBvh) btQuantizedBvh;
 | |
| 
 | |
| 	if (i_swapEndian)
 | |
| 	{
 | |
| 		targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex));
 | |
| 
 | |
| 
 | |
| 		btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin);
 | |
| 		btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax);
 | |
| 		btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization);
 | |
| 
 | |
| 		targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode);
 | |
| 		targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount));
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		targetBvh->m_curNodeIndex = m_curNodeIndex;
 | |
| 		targetBvh->m_bvhAabbMin = m_bvhAabbMin;
 | |
| 		targetBvh->m_bvhAabbMax = m_bvhAabbMax;
 | |
| 		targetBvh->m_bvhQuantization = m_bvhQuantization;
 | |
| 		targetBvh->m_traversalMode = m_traversalMode;
 | |
| 		targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount;
 | |
| 	}
 | |
| 
 | |
| 	targetBvh->m_useQuantization = m_useQuantization;
 | |
| 
 | |
| 	unsigned char *nodeData = (unsigned char *)targetBvh;
 | |
| 	nodeData += sizeof(btQuantizedBvh);
 | |
| 	
 | |
| 	unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
 | |
| 	nodeData += sizeToAdd;
 | |
| 	
 | |
| 	int nodeCount = m_curNodeIndex;
 | |
| 
 | |
| 	if (m_useQuantization)
 | |
| 	{
 | |
| 		targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
 | |
| 
 | |
| 		if (i_swapEndian)
 | |
| 		{
 | |
| 			for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
 | |
| 			{
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]);
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]);
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]);
 | |
| 
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]);
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]);
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]);
 | |
| 
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex));
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
 | |
| 			{
 | |
| 	
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0];
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1];
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2];
 | |
| 
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0];
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1];
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2];
 | |
| 
 | |
| 				targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex;
 | |
| 
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 		nodeData += sizeof(btQuantizedBvhNode) * nodeCount;
 | |
| 
 | |
| 		// this clears the pointer in the member variable it doesn't really do anything to the data
 | |
| 		// it does call the destructor on the contained objects, but they are all classes with no destructor defined
 | |
| 		// so the memory (which is not freed) is left alone
 | |
| 		targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
 | |
| 
 | |
| 		if (i_swapEndian)
 | |
| 		{
 | |
| 			for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
 | |
| 			{
 | |
| 				btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg);
 | |
| 				btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg);
 | |
| 
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex));
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart));
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex));
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
 | |
| 			{
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg;
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg;
 | |
| 
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex;
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart;
 | |
| 				targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex;
 | |
| 			}
 | |
| 		}
 | |
| 		nodeData += sizeof(btOptimizedBvhNode) * nodeCount;
 | |
| 
 | |
| 		// this clears the pointer in the member variable it doesn't really do anything to the data
 | |
| 		// it does call the destructor on the contained objects, but they are all classes with no destructor defined
 | |
| 		// so the memory (which is not freed) is left alone
 | |
| 		targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
 | |
| 	nodeData += sizeToAdd;
 | |
| 
 | |
| 	// Now serialize the subtree headers
 | |
| 	targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount);
 | |
| 	if (i_swapEndian)
 | |
| 	{
 | |
| 		for (int i = 0; i < m_subtreeHeaderCount; i++)
 | |
| 		{
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]);
 | |
| 
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]);
 | |
| 
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex));
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize));
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		for (int i = 0; i < m_subtreeHeaderCount; i++)
 | |
| 		{
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]);
 | |
| 
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]);
 | |
| 
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex);
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize);
 | |
| 
 | |
| 			// need to clear padding in destination buffer
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0;
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0;
 | |
| 			targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount;
 | |
| 
 | |
| 	// this clears the pointer in the member variable it doesn't really do anything to the data
 | |
| 	// it does call the destructor on the contained objects, but they are all classes with no destructor defined
 | |
| 	// so the memory (which is not freed) is left alone
 | |
| 	targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0);
 | |
| 
 | |
| 	// this wipes the virtual function table pointer at the start of the buffer for the class
 | |
| 	*((void**)o_alignedDataBuffer) = NULL;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
 | |
| {
 | |
| 
 | |
| 	if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer;
 | |
| 
 | |
| 	if (i_swapEndian)
 | |
| 	{
 | |
| 		bvh->m_curNodeIndex = static_cast<int>(btSwapEndian(bvh->m_curNodeIndex));
 | |
| 
 | |
| 		btUnSwapVector3Endian(bvh->m_bvhAabbMin);
 | |
| 		btUnSwapVector3Endian(bvh->m_bvhAabbMax);
 | |
| 		btUnSwapVector3Endian(bvh->m_bvhQuantization);
 | |
| 
 | |
| 		bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode);
 | |
| 		bvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(bvh->m_subtreeHeaderCount));
 | |
| 	}
 | |
| 
 | |
| 	unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize();
 | |
| 	btAssert(calculatedBufSize <= i_dataBufferSize);
 | |
| 
 | |
| 	if (calculatedBufSize > i_dataBufferSize)
 | |
| 	{
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	unsigned char *nodeData = (unsigned char *)bvh;
 | |
| 	nodeData += sizeof(btQuantizedBvh);
 | |
| 	
 | |
| 	unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
 | |
| 	nodeData += sizeToAdd;
 | |
| 	
 | |
| 	int nodeCount = bvh->m_curNodeIndex;
 | |
| 
 | |
| 	// Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor
 | |
| 	// Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor
 | |
| 	new (bvh) btQuantizedBvh(*bvh, false);
 | |
| 
 | |
| 	if (bvh->m_useQuantization)
 | |
| 	{
 | |
| 		bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
 | |
| 
 | |
| 		if (i_swapEndian)
 | |
| 		{
 | |
| 			for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
 | |
| 			{
 | |
| 				bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]);
 | |
| 				bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]);
 | |
| 				bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]);
 | |
| 
 | |
| 				bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]);
 | |
| 				bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]);
 | |
| 				bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]);
 | |
| 
 | |
| 				bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex));
 | |
| 			}
 | |
| 		}
 | |
| 		nodeData += sizeof(btQuantizedBvhNode) * nodeCount;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount);
 | |
| 
 | |
| 		if (i_swapEndian)
 | |
| 		{
 | |
| 			for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
 | |
| 			{
 | |
| 				btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg);
 | |
| 				btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg);
 | |
| 				
 | |
| 				bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex));
 | |
| 				bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart));
 | |
| 				bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex));
 | |
| 			}
 | |
| 		}
 | |
| 		nodeData += sizeof(btOptimizedBvhNode) * nodeCount;
 | |
| 	}
 | |
| 
 | |
| 	sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
 | |
| 	nodeData += sizeToAdd;
 | |
| 
 | |
| 	// Now serialize the subtree headers
 | |
| 	bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount);
 | |
| 	if (i_swapEndian)
 | |
| 	{
 | |
| 		for (int i = 0; i < bvh->m_subtreeHeaderCount; i++)
 | |
| 		{
 | |
| 			bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]);
 | |
| 			bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]);
 | |
| 			bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]);
 | |
| 
 | |
| 			bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]);
 | |
| 			bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]);
 | |
| 			bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]);
 | |
| 
 | |
| 			bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex));
 | |
| 			bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return bvh;
 | |
| }
 | |
| 
 | |
| // Constructor that prevents btVector3's default constructor from being called
 | |
| btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) :
 | |
| m_bvhAabbMin(self.m_bvhAabbMin),
 | |
| m_bvhAabbMax(self.m_bvhAabbMax),
 | |
| m_bvhQuantization(self.m_bvhQuantization),
 | |
| m_bulletVersion(BT_BULLET_VERSION)
 | |
| {
 | |
| 
 | |
| }
 | |
| 
 | |
| void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedBvhFloatData)
 | |
| {
 | |
| 	m_bvhAabbMax.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMax);
 | |
| 	m_bvhAabbMin.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMin);
 | |
| 	m_bvhQuantization.deSerializeFloat(quantizedBvhFloatData.m_bvhQuantization);
 | |
| 
 | |
| 	m_curNodeIndex = quantizedBvhFloatData.m_curNodeIndex;
 | |
| 	m_useQuantization = quantizedBvhFloatData.m_useQuantization!=0;
 | |
| 	
 | |
| 	{
 | |
| 		int numElem = quantizedBvhFloatData.m_numContiguousLeafNodes;
 | |
| 		m_contiguousNodes.resize(numElem);
 | |
| 
 | |
| 		if (numElem)
 | |
| 		{
 | |
| 			btOptimizedBvhNodeFloatData* memPtr = quantizedBvhFloatData.m_contiguousNodesPtr;
 | |
| 
 | |
| 			for (int i=0;i<numElem;i++,memPtr++)
 | |
| 			{
 | |
| 				m_contiguousNodes[i].m_aabbMaxOrg.deSerializeFloat(memPtr->m_aabbMaxOrg);
 | |
| 				m_contiguousNodes[i].m_aabbMinOrg.deSerializeFloat(memPtr->m_aabbMinOrg);
 | |
| 				m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex;
 | |
| 				m_contiguousNodes[i].m_subPart = memPtr->m_subPart;
 | |
| 				m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		int numElem = quantizedBvhFloatData.m_numQuantizedContiguousNodes;
 | |
| 		m_quantizedContiguousNodes.resize(numElem);
 | |
| 		
 | |
| 		if (numElem)
 | |
| 		{
 | |
| 			btQuantizedBvhNodeData* memPtr = quantizedBvhFloatData.m_quantizedContiguousNodesPtr;
 | |
| 			for (int i=0;i<numElem;i++,memPtr++)
 | |
| 			{
 | |
| 				m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex;
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	m_traversalMode = btTraversalMode(quantizedBvhFloatData.m_traversalMode);
 | |
| 	
 | |
| 	{
 | |
| 		int numElem = quantizedBvhFloatData.m_numSubtreeHeaders;
 | |
| 		m_SubtreeHeaders.resize(numElem);
 | |
| 		if (numElem)
 | |
| 		{
 | |
| 			btBvhSubtreeInfoData* memPtr = quantizedBvhFloatData.m_subTreeInfoPtr;
 | |
| 			for (int i=0;i<numElem;i++,memPtr++)
 | |
| 			{
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ;
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2];
 | |
| 				m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex;
 | |
| 				m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantizedBvhDoubleData)
 | |
| {
 | |
| 	m_bvhAabbMax.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMax);
 | |
| 	m_bvhAabbMin.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMin);
 | |
| 	m_bvhQuantization.deSerializeDouble(quantizedBvhDoubleData.m_bvhQuantization);
 | |
| 
 | |
| 	m_curNodeIndex = quantizedBvhDoubleData.m_curNodeIndex;
 | |
| 	m_useQuantization = quantizedBvhDoubleData.m_useQuantization!=0;
 | |
| 	
 | |
| 	{
 | |
| 		int numElem = quantizedBvhDoubleData.m_numContiguousLeafNodes;
 | |
| 		m_contiguousNodes.resize(numElem);
 | |
| 
 | |
| 		if (numElem)
 | |
| 		{
 | |
| 			btOptimizedBvhNodeDoubleData* memPtr = quantizedBvhDoubleData.m_contiguousNodesPtr;
 | |
| 
 | |
| 			for (int i=0;i<numElem;i++,memPtr++)
 | |
| 			{
 | |
| 				m_contiguousNodes[i].m_aabbMaxOrg.deSerializeDouble(memPtr->m_aabbMaxOrg);
 | |
| 				m_contiguousNodes[i].m_aabbMinOrg.deSerializeDouble(memPtr->m_aabbMinOrg);
 | |
| 				m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex;
 | |
| 				m_contiguousNodes[i].m_subPart = memPtr->m_subPart;
 | |
| 				m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		int numElem = quantizedBvhDoubleData.m_numQuantizedContiguousNodes;
 | |
| 		m_quantizedContiguousNodes.resize(numElem);
 | |
| 		
 | |
| 		if (numElem)
 | |
| 		{
 | |
| 			btQuantizedBvhNodeData* memPtr = quantizedBvhDoubleData.m_quantizedContiguousNodesPtr;
 | |
| 			for (int i=0;i<numElem;i++,memPtr++)
 | |
| 			{
 | |
| 				m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex;
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1];
 | |
| 				m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	m_traversalMode = btTraversalMode(quantizedBvhDoubleData.m_traversalMode);
 | |
| 	
 | |
| 	{
 | |
| 		int numElem = quantizedBvhDoubleData.m_numSubtreeHeaders;
 | |
| 		m_SubtreeHeaders.resize(numElem);
 | |
| 		if (numElem)
 | |
| 		{
 | |
| 			btBvhSubtreeInfoData* memPtr = quantizedBvhDoubleData.m_subTreeInfoPtr;
 | |
| 			for (int i=0;i<numElem;i++,memPtr++)
 | |
| 			{
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ;
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1];
 | |
| 				m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2];
 | |
| 				m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex;
 | |
| 				m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| ///fills the dataBuffer and returns the struct name (and 0 on failure)
 | |
| const char*	btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer) const
 | |
| {
 | |
| 	btQuantizedBvhData* quantizedData = (btQuantizedBvhData*)dataBuffer;
 | |
| 	
 | |
| 	m_bvhAabbMax.serialize(quantizedData->m_bvhAabbMax);
 | |
| 	m_bvhAabbMin.serialize(quantizedData->m_bvhAabbMin);
 | |
| 	m_bvhQuantization.serialize(quantizedData->m_bvhQuantization);
 | |
| 
 | |
| 	quantizedData->m_curNodeIndex = m_curNodeIndex;
 | |
| 	quantizedData->m_useQuantization = m_useQuantization;
 | |
| 	
 | |
| 	quantizedData->m_numContiguousLeafNodes = m_contiguousNodes.size();
 | |
| 	quantizedData->m_contiguousNodesPtr = (btOptimizedBvhNodeData*) (m_contiguousNodes.size() ? serializer->getUniquePointer((void*)&m_contiguousNodes[0]) : 0);
 | |
| 	if (quantizedData->m_contiguousNodesPtr)
 | |
| 	{
 | |
| 		int sz = sizeof(btOptimizedBvhNodeData);
 | |
| 		int numElem = m_contiguousNodes.size();
 | |
| 		btChunk* chunk = serializer->allocate(sz,numElem);
 | |
| 		btOptimizedBvhNodeData* memPtr = (btOptimizedBvhNodeData*)chunk->m_oldPtr;
 | |
| 		for (int i=0;i<numElem;i++,memPtr++)
 | |
| 		{
 | |
| 			m_contiguousNodes[i].m_aabbMaxOrg.serialize(memPtr->m_aabbMaxOrg);
 | |
| 			m_contiguousNodes[i].m_aabbMinOrg.serialize(memPtr->m_aabbMinOrg);
 | |
| 			memPtr->m_escapeIndex = m_contiguousNodes[i].m_escapeIndex;
 | |
| 			memPtr->m_subPart = m_contiguousNodes[i].m_subPart;
 | |
| 			memPtr->m_triangleIndex = m_contiguousNodes[i].m_triangleIndex;
 | |
| 			// Fill padding with zeros to appease msan.
 | |
| 			memset(memPtr->m_pad, 0, sizeof(memPtr->m_pad));
 | |
| 		}
 | |
| 		serializer->finalizeChunk(chunk,"btOptimizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_contiguousNodes[0]);
 | |
| 	}
 | |
| 
 | |
| 	quantizedData->m_numQuantizedContiguousNodes = m_quantizedContiguousNodes.size();
 | |
| //	printf("quantizedData->m_numQuantizedContiguousNodes=%d\n",quantizedData->m_numQuantizedContiguousNodes);
 | |
| 	quantizedData->m_quantizedContiguousNodesPtr =(btQuantizedBvhNodeData*) (m_quantizedContiguousNodes.size() ? serializer->getUniquePointer((void*)&m_quantizedContiguousNodes[0]) : 0);
 | |
| 	if (quantizedData->m_quantizedContiguousNodesPtr)
 | |
| 	{
 | |
| 		int sz = sizeof(btQuantizedBvhNodeData);
 | |
| 		int numElem = m_quantizedContiguousNodes.size();
 | |
| 		btChunk* chunk = serializer->allocate(sz,numElem);
 | |
| 		btQuantizedBvhNodeData* memPtr = (btQuantizedBvhNodeData*)chunk->m_oldPtr;
 | |
| 		for (int i=0;i<numElem;i++,memPtr++)
 | |
| 		{
 | |
| 			memPtr->m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex;
 | |
| 			memPtr->m_quantizedAabbMax[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[0];
 | |
| 			memPtr->m_quantizedAabbMax[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[1];
 | |
| 			memPtr->m_quantizedAabbMax[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[2];
 | |
| 			memPtr->m_quantizedAabbMin[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[0];
 | |
| 			memPtr->m_quantizedAabbMin[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[1];
 | |
| 			memPtr->m_quantizedAabbMin[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[2];
 | |
| 		}
 | |
| 		serializer->finalizeChunk(chunk,"btQuantizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_quantizedContiguousNodes[0]);
 | |
| 	}
 | |
| 
 | |
| 	quantizedData->m_traversalMode = int(m_traversalMode);
 | |
| 	quantizedData->m_numSubtreeHeaders = m_SubtreeHeaders.size();
 | |
| 
 | |
| 	quantizedData->m_subTreeInfoPtr = (btBvhSubtreeInfoData*) (m_SubtreeHeaders.size() ? serializer->getUniquePointer((void*)&m_SubtreeHeaders[0]) : 0);
 | |
| 	if (quantizedData->m_subTreeInfoPtr)
 | |
| 	{
 | |
| 		int sz = sizeof(btBvhSubtreeInfoData);
 | |
| 		int numElem = m_SubtreeHeaders.size();
 | |
| 		btChunk* chunk = serializer->allocate(sz,numElem);
 | |
| 		btBvhSubtreeInfoData* memPtr = (btBvhSubtreeInfoData*)chunk->m_oldPtr;
 | |
| 		for (int i=0;i<numElem;i++,memPtr++)
 | |
| 		{
 | |
| 			memPtr->m_quantizedAabbMax[0] = m_SubtreeHeaders[i].m_quantizedAabbMax[0];
 | |
| 			memPtr->m_quantizedAabbMax[1] = m_SubtreeHeaders[i].m_quantizedAabbMax[1];
 | |
| 			memPtr->m_quantizedAabbMax[2] = m_SubtreeHeaders[i].m_quantizedAabbMax[2];
 | |
| 			memPtr->m_quantizedAabbMin[0] = m_SubtreeHeaders[i].m_quantizedAabbMin[0];
 | |
| 			memPtr->m_quantizedAabbMin[1] = m_SubtreeHeaders[i].m_quantizedAabbMin[1];
 | |
| 			memPtr->m_quantizedAabbMin[2] = m_SubtreeHeaders[i].m_quantizedAabbMin[2];
 | |
| 
 | |
| 			memPtr->m_rootNodeIndex = m_SubtreeHeaders[i].m_rootNodeIndex;
 | |
| 			memPtr->m_subtreeSize = m_SubtreeHeaders[i].m_subtreeSize;
 | |
| 		}
 | |
| 		serializer->finalizeChunk(chunk,"btBvhSubtreeInfoData",BT_ARRAY_CODE,(void*)&m_SubtreeHeaders[0]);
 | |
| 	}
 | |
| 	return btQuantizedBvhDataName;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 |