forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			263 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #if defined (_WIN32) || defined (__i386__)
 | |
| #define BT_USE_SSE_IN_API
 | |
| #endif
 | |
| 
 | |
| #include "btConvexHullShape.h"
 | |
| #include "BulletCollision/CollisionShapes/btCollisionMargin.h"
 | |
| 
 | |
| #include "LinearMath/btQuaternion.h"
 | |
| #include "LinearMath/btSerializer.h"
 | |
| #include "btConvexPolyhedron.h"
 | |
| #include "LinearMath/btConvexHullComputer.h"
 | |
| 
 | |
| btConvexHullShape ::btConvexHullShape (const btScalar* points,int numPoints,int stride) : btPolyhedralConvexAabbCachingShape ()
 | |
| {
 | |
| 	m_shapeType = CONVEX_HULL_SHAPE_PROXYTYPE;
 | |
| 	m_unscaledPoints.resize(numPoints);
 | |
| 
 | |
| 	unsigned char* pointsAddress = (unsigned char*)points;
 | |
| 
 | |
| 	for (int i=0;i<numPoints;i++)
 | |
| 	{
 | |
| 		btScalar* point = (btScalar*)pointsAddress;
 | |
| 		m_unscaledPoints[i] = btVector3(point[0], point[1], point[2]);
 | |
| 		pointsAddress += stride;
 | |
| 	}
 | |
| 
 | |
| 	recalcLocalAabb();
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void btConvexHullShape::setLocalScaling(const btVector3& scaling)
 | |
| {
 | |
| 	m_localScaling = scaling;
 | |
| 	recalcLocalAabb();
 | |
| }
 | |
| 
 | |
| void btConvexHullShape::addPoint(const btVector3& point, bool recalculateLocalAabb)
 | |
| {
 | |
| 	m_unscaledPoints.push_back(point);
 | |
| 	if (recalculateLocalAabb)
 | |
| 		recalcLocalAabb();
 | |
| 
 | |
| }
 | |
| 
 | |
| btVector3	btConvexHullShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
 | |
| {
 | |
| 	btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
 | |
| 	btScalar maxDot = btScalar(-BT_LARGE_FLOAT);
 | |
| 
 | |
|     // Here we take advantage of dot(a, b*c) = dot(a*b, c).  Note: This is true mathematically, but not numerically. 
 | |
|     if( 0 < m_unscaledPoints.size() )
 | |
|     {
 | |
|         btVector3 scaled = vec * m_localScaling;
 | |
|         int index = (int) scaled.maxDot( &m_unscaledPoints[0], m_unscaledPoints.size(), maxDot); // FIXME: may violate encapsulation of m_unscaledPoints
 | |
|         return m_unscaledPoints[index] * m_localScaling;
 | |
|     }
 | |
| 
 | |
|     return supVec;
 | |
| }
 | |
| 
 | |
| void	btConvexHullShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
 | |
| {
 | |
| 	btScalar newDot;
 | |
| 	//use 'w' component of supportVerticesOut?
 | |
| 	{
 | |
| 		for (int i=0;i<numVectors;i++)
 | |
| 		{
 | |
| 			supportVerticesOut[i][3] = btScalar(-BT_LARGE_FLOAT);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|     for (int j=0;j<numVectors;j++)
 | |
|     {
 | |
|         btVector3 vec = vectors[j] * m_localScaling;        // dot(a*b,c) = dot(a,b*c)
 | |
|         if( 0 <  m_unscaledPoints.size() )
 | |
|         {
 | |
|             int i = (int) vec.maxDot( &m_unscaledPoints[0], m_unscaledPoints.size(), newDot);
 | |
|             supportVerticesOut[j] = getScaledPoint(i);
 | |
|             supportVerticesOut[j][3] = newDot;        
 | |
|         }
 | |
|         else
 | |
|             supportVerticesOut[j][3] = -BT_LARGE_FLOAT;
 | |
|     }
 | |
| 
 | |
| 
 | |
| 
 | |
| }
 | |
| 	
 | |
| 
 | |
| 
 | |
| btVector3	btConvexHullShape::localGetSupportingVertex(const btVector3& vec)const
 | |
| {
 | |
| 	btVector3 supVertex = localGetSupportingVertexWithoutMargin(vec);
 | |
| 
 | |
| 	if ( getMargin()!=btScalar(0.) )
 | |
| 	{
 | |
| 		btVector3 vecnorm = vec;
 | |
| 		if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
 | |
| 		{
 | |
| 			vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
 | |
| 		} 
 | |
| 		vecnorm.normalize();
 | |
| 		supVertex+= getMargin() * vecnorm;
 | |
| 	}
 | |
| 	return supVertex;
 | |
| }
 | |
| 
 | |
| 
 | |
| void btConvexHullShape::optimizeConvexHull()
 | |
| {
 | |
| 	btConvexHullComputer conv;
 | |
| 	conv.compute(&m_unscaledPoints[0].getX(), sizeof(btVector3),m_unscaledPoints.size(),0.f,0.f);
 | |
| 	int numVerts = conv.vertices.size();
 | |
| 	m_unscaledPoints.resize(0);
 | |
| 	for (int i=0;i<numVerts;i++)
 | |
|     {
 | |
|         m_unscaledPoints.push_back(conv.vertices[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //currently just for debugging (drawing), perhaps future support for algebraic continuous collision detection
 | |
| //Please note that you can debug-draw btConvexHullShape with the Raytracer Demo
 | |
| int	btConvexHullShape::getNumVertices() const
 | |
| {
 | |
| 	return m_unscaledPoints.size();
 | |
| }
 | |
| 
 | |
| int btConvexHullShape::getNumEdges() const
 | |
| {
 | |
| 	return m_unscaledPoints.size();
 | |
| }
 | |
| 
 | |
| void btConvexHullShape::getEdge(int i,btVector3& pa,btVector3& pb) const
 | |
| {
 | |
| 
 | |
| 	int index0 = i%m_unscaledPoints.size();
 | |
| 	int index1 = (i+1)%m_unscaledPoints.size();
 | |
| 	pa = getScaledPoint(index0);
 | |
| 	pb = getScaledPoint(index1);
 | |
| }
 | |
| 
 | |
| void btConvexHullShape::getVertex(int i,btVector3& vtx) const
 | |
| {
 | |
| 	vtx = getScaledPoint(i);
 | |
| }
 | |
| 
 | |
| int	btConvexHullShape::getNumPlanes() const
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void btConvexHullShape::getPlane(btVector3& ,btVector3& ,int ) const
 | |
| {
 | |
| 
 | |
| 	btAssert(0);
 | |
| }
 | |
| 
 | |
| //not yet
 | |
| bool btConvexHullShape::isInside(const btVector3& ,btScalar ) const
 | |
| {
 | |
| 	btAssert(0);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| ///fills the dataBuffer and returns the struct name (and 0 on failure)
 | |
| const char*	btConvexHullShape::serialize(void* dataBuffer, btSerializer* serializer) const
 | |
| {
 | |
| 	//int szc = sizeof(btConvexHullShapeData);
 | |
| 	btConvexHullShapeData* shapeData = (btConvexHullShapeData*) dataBuffer;
 | |
| 	btConvexInternalShape::serialize(&shapeData->m_convexInternalShapeData, serializer);
 | |
| 
 | |
| 	int numElem = m_unscaledPoints.size();
 | |
| 	shapeData->m_numUnscaledPoints = numElem;
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| 	shapeData->m_unscaledPointsFloatPtr = 0;
 | |
| 	shapeData->m_unscaledPointsDoublePtr = numElem ? (btVector3Data*)serializer->getUniquePointer((void*)&m_unscaledPoints[0]):  0;
 | |
| #else
 | |
| 	shapeData->m_unscaledPointsFloatPtr = numElem ? (btVector3Data*)serializer->getUniquePointer((void*)&m_unscaledPoints[0]):  0;
 | |
| 	shapeData->m_unscaledPointsDoublePtr = 0;
 | |
| #endif
 | |
| 	
 | |
| 	if (numElem)
 | |
| 	{
 | |
| 		int sz = sizeof(btVector3Data);
 | |
| 	//	int sz2 = sizeof(btVector3DoubleData);
 | |
| 	//	int sz3 = sizeof(btVector3FloatData);
 | |
| 		btChunk* chunk = serializer->allocate(sz,numElem);
 | |
| 		btVector3Data* memPtr = (btVector3Data*)chunk->m_oldPtr;
 | |
| 		for (int i=0;i<numElem;i++,memPtr++)
 | |
| 		{
 | |
| 			m_unscaledPoints[i].serialize(*memPtr);
 | |
| 		}
 | |
| 		serializer->finalizeChunk(chunk,btVector3DataName,BT_ARRAY_CODE,(void*)&m_unscaledPoints[0]);
 | |
| 	}
 | |
| 
 | |
| 	// Fill padding with zeros to appease msan.
 | |
| 	memset(shapeData->m_padding3, 0, sizeof(shapeData->m_padding3));
 | |
| 
 | |
| 	return "btConvexHullShapeData";
 | |
| }
 | |
| 
 | |
| void btConvexHullShape::project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin,btVector3& witnesPtMax) const
 | |
| {
 | |
| #if 1
 | |
| 	minProj = FLT_MAX;
 | |
| 	maxProj = -FLT_MAX;
 | |
| 
 | |
| 	int numVerts = m_unscaledPoints.size();
 | |
| 	for(int i=0;i<numVerts;i++)
 | |
| 	{
 | |
| 		btVector3 vtx = m_unscaledPoints[i] * m_localScaling;
 | |
| 		btVector3 pt = trans * vtx;
 | |
| 		btScalar dp = pt.dot(dir);
 | |
| 		if(dp < minProj)	
 | |
| 		{
 | |
| 			minProj = dp;
 | |
| 			witnesPtMin = pt;
 | |
| 		}
 | |
| 		if(dp > maxProj)	
 | |
| 		{
 | |
| 			maxProj = dp;
 | |
| 			witnesPtMax=pt;
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	btVector3 localAxis = dir*trans.getBasis();
 | |
| 	witnesPtMin  = trans(localGetSupportingVertex(localAxis));
 | |
| 	witnesPtMax = trans(localGetSupportingVertex(-localAxis));
 | |
| 
 | |
| 	minProj = witnesPtMin.dot(dir);
 | |
| 	maxProj = witnesPtMax.dot(dir);
 | |
| #endif
 | |
| 
 | |
| 	if(minProj>maxProj)
 | |
| 	{
 | |
| 		btSwap(minProj,maxProj);
 | |
| 		btSwap(witnesPtMin,witnesPtMax);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 |