forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			1430 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1430 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2013 Erwin Coumans  http://bulletphysics.org
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| 
 | |
| #include "btMultiBodyConstraintSolver.h"
 | |
| #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
 | |
| #include "btMultiBodyLinkCollider.h"
 | |
| 
 | |
| #include "BulletDynamics/ConstraintSolver/btSolverBody.h"
 | |
| #include "btMultiBodyConstraint.h"
 | |
| #include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
 | |
| 
 | |
| #include "LinearMath/btQuickprof.h"
 | |
| 
 | |
| btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
 | |
| {
 | |
| 	btScalar leastSquaredResidual  = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
 | |
| 	
 | |
| 	//solve featherstone non-contact constraints
 | |
| 
 | |
| 	//printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
 | |
| 
 | |
| 	for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
 | |
| 	{
 | |
| 		int index = iteration&1? j : m_multiBodyNonContactConstraints.size()-1-j;
 | |
| 
 | |
| 		btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[index];
 | |
| 		
 | |
| 		btScalar residual = resolveSingleConstraintRowGeneric(constraint);
 | |
| 		leastSquaredResidual += residual*residual;
 | |
| 
 | |
| 		if(constraint.m_multiBodyA) 
 | |
| 			constraint.m_multiBodyA->setPosUpdated(false);
 | |
| 		if(constraint.m_multiBodyB) 
 | |
| 			constraint.m_multiBodyB->setPosUpdated(false);
 | |
| 	}
 | |
| 
 | |
| 	//solve featherstone normal contact
 | |
| 	for (int j0=0;j0<m_multiBodyNormalContactConstraints.size();j0++)
 | |
| 	{
 | |
| 		int index = j0;//iteration&1? j0 : m_multiBodyNormalContactConstraints.size()-1-j0;
 | |
| 
 | |
| 		btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[index];
 | |
| 		btScalar residual = 0.f;
 | |
| 
 | |
| 		if (iteration < infoGlobal.m_numIterations)
 | |
| 		{
 | |
| 			residual = resolveSingleConstraintRowGeneric(constraint);
 | |
| 		}
 | |
| 
 | |
| 		leastSquaredResidual += residual*residual;
 | |
|  
 | |
| 		if(constraint.m_multiBodyA) 
 | |
| 			constraint.m_multiBodyA->setPosUpdated(false);
 | |
| 		if(constraint.m_multiBodyB) 
 | |
| 			constraint.m_multiBodyB->setPosUpdated(false);
 | |
| 	}
 | |
| 	
 | |
| 	//solve featherstone frictional contact
 | |
| 
 | |
| 	for (int j1=0;j1<this->m_multiBodyFrictionContactConstraints.size();j1++)
 | |
| 	{
 | |
| 		if (iteration < infoGlobal.m_numIterations)
 | |
| 		{
 | |
| 			int index = j1;//iteration&1? j1 : m_multiBodyFrictionContactConstraints.size()-1-j1;
 | |
| 
 | |
| 			btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[index];
 | |
| 			btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
 | |
| 			//adjust friction limits here
 | |
| 			if (totalImpulse>btScalar(0))
 | |
| 			{
 | |
| 				frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
 | |
| 				frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
 | |
| 				btScalar residual = resolveSingleConstraintRowGeneric(frictionConstraint);
 | |
| 				leastSquaredResidual += residual*residual;
 | |
| 
 | |
| 				if(frictionConstraint.m_multiBodyA) 
 | |
| 					frictionConstraint.m_multiBodyA->setPosUpdated(false);
 | |
| 				if(frictionConstraint.m_multiBodyB) 
 | |
| 					frictionConstraint.m_multiBodyB->setPosUpdated(false);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return leastSquaredResidual;
 | |
| }
 | |
| 
 | |
| btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
 | |
| {
 | |
| 	m_multiBodyNonContactConstraints.resize(0);
 | |
| 	m_multiBodyNormalContactConstraints.resize(0);
 | |
| 	m_multiBodyFrictionContactConstraints.resize(0);
 | |
| 	m_data.m_jacobians.resize(0);
 | |
| 	m_data.m_deltaVelocitiesUnitImpulse.resize(0);
 | |
| 	m_data.m_deltaVelocities.resize(0);
 | |
| 
 | |
| 	for (int i=0;i<numBodies;i++)
 | |
| 	{
 | |
| 		const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
 | |
| 		if (fcA)
 | |
| 		{
 | |
| 			fcA->m_multiBody->setCompanionId(-1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| void	btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
 | |
| {
 | |
|     for (int i = 0; i < ndof; ++i) 
 | |
| 		m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
 | |
| }
 | |
| 
 | |
| btScalar btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
 | |
| {
 | |
| 
 | |
| 	btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
 | |
| 	btScalar deltaVelADotn=0;
 | |
| 	btScalar deltaVelBDotn=0;
 | |
| 	btSolverBody* bodyA = 0;
 | |
| 	btSolverBody* bodyB = 0;
 | |
| 	int ndofA=0;
 | |
| 	int ndofB=0;
 | |
| 
 | |
| 	if (c.m_multiBodyA)
 | |
| 	{
 | |
| 		ndofA  = c.m_multiBodyA->getNumDofs() + 6;
 | |
| 		for (int i = 0; i < ndofA; ++i) 
 | |
| 			deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
 | |
| 	} else if(c.m_solverBodyIdA >= 0)
 | |
| 	{
 | |
| 		bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
 | |
| 		deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) 	+ c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
 | |
| 	}
 | |
| 
 | |
| 	if (c.m_multiBodyB)
 | |
| 	{
 | |
| 		ndofB  = c.m_multiBodyB->getNumDofs() + 6;
 | |
| 		for (int i = 0; i < ndofB; ++i) 
 | |
| 			deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
 | |
| 	} else if(c.m_solverBodyIdB >= 0)
 | |
| 	{
 | |
| 		bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
 | |
| 		deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity())  + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	deltaImpulse	-=	deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
 | |
| 	deltaImpulse	-=	deltaVelBDotn*c.m_jacDiagABInv;
 | |
| 	const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
 | |
| 	
 | |
| 	if (sum < c.m_lowerLimit)
 | |
| 	{
 | |
| 		deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
 | |
| 		c.m_appliedImpulse = c.m_lowerLimit;
 | |
| 	}
 | |
| 	else if (sum > c.m_upperLimit) 
 | |
| 	{
 | |
| 		deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
 | |
| 		c.m_appliedImpulse = c.m_upperLimit;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		c.m_appliedImpulse = sum;
 | |
| 	}
 | |
| 
 | |
| 	if (c.m_multiBodyA)
 | |
| 	{
 | |
| 		applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
 | |
| #ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | |
| 		//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
 | |
| 		//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
 | |
| 		c.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
 | |
| #endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | |
| 	} else if(c.m_solverBodyIdA >= 0)
 | |
| 	{
 | |
| 		bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
 | |
| 
 | |
| 	}
 | |
| 	if (c.m_multiBodyB)
 | |
| 	{
 | |
| 		applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
 | |
| #ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | |
| 		//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
 | |
| 		//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
 | |
| 		c.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
 | |
| #endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | |
| 	} else if(c.m_solverBodyIdB >= 0)
 | |
| 	{
 | |
| 		bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
 | |
| 	}
 | |
| 	return deltaImpulse;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint, 
 | |
| 																 const btVector3& contactNormal,
 | |
| 																 btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
 | |
| 																 btScalar& relaxation,
 | |
| 																 bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
 | |
| {
 | |
| 			
 | |
| 	BT_PROFILE("setupMultiBodyContactConstraint");
 | |
| 	btVector3 rel_pos1;
 | |
| 	btVector3 rel_pos2;
 | |
| 
 | |
| 	btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
 | |
| 	btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
 | |
| 
 | |
| 	const btVector3& pos1 = cp.getPositionWorldOnA();
 | |
| 	const btVector3& pos2 = cp.getPositionWorldOnB();
 | |
| 
 | |
| 	btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
 | |
| 	btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
 | |
| 
 | |
| 	btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
 | |
| 	btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
 | |
| 
 | |
| 	if (bodyA)
 | |
| 		rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin(); 
 | |
| 	if (bodyB)
 | |
| 		rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
 | |
| 
 | |
| 	relaxation = infoGlobal.m_sor;
 | |
| 	
 | |
| 	btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
 | |
| 	
 | |
| 	 //cfm = 1 /       ( dt * kp + kd )
 | |
|     //erp = dt * kp / ( dt * kp + kd )
 | |
|     
 | |
|     btScalar cfm;
 | |
| 	btScalar erp;
 | |
| 	if (isFriction)
 | |
| 	{
 | |
| 		cfm = infoGlobal.m_frictionCFM;
 | |
| 		erp = infoGlobal.m_frictionERP;
 | |
| 	} else
 | |
| 	{
 | |
| 		cfm = infoGlobal.m_globalCfm;
 | |
| 		erp = infoGlobal.m_erp2;
 | |
| 
 | |
| 		if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
 | |
| 		{
 | |
| 			if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
 | |
| 				cfm  = cp.m_contactCFM;
 | |
| 			if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
 | |
| 				erp = cp.m_contactERP;                
 | |
| 		} else
 | |
| 		{
 | |
| 			if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
 | |
| 			{
 | |
| 				btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
 | |
| 				if (denom < SIMD_EPSILON)
 | |
| 				{
 | |
| 					denom = SIMD_EPSILON;
 | |
| 				}
 | |
| 				cfm = btScalar(1) / denom; 
 | |
| 				erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cfm *= invTimeStep;
 | |
| 
 | |
| 	if (multiBodyA)
 | |
| 	{
 | |
| 		if (solverConstraint.m_linkA<0)
 | |
| 		{
 | |
| 			rel_pos1 = pos1 - multiBodyA->getBasePos();
 | |
| 		} else
 | |
| 		{
 | |
| 			rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
 | |
| 		}
 | |
| 		const int ndofA  = multiBodyA->getNumDofs() + 6;
 | |
| 
 | |
| 		solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
 | |
| 
 | |
| 		if (solverConstraint.m_deltaVelAindex <0)
 | |
| 		{
 | |
| 			solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
 | |
| 			multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
 | |
| 			m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
 | |
| 		} else
 | |
| 		{
 | |
| 			btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
 | |
| 		}
 | |
| 
 | |
| 		solverConstraint.m_jacAindex = m_data.m_jacobians.size();
 | |
| 		m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
 | |
| 		m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
 | |
| 		btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | |
| 
 | |
| 		btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
 | |
| 		multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | |
| 		btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | |
| 		multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
 | |
| 
 | |
| 		btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
 | |
| 		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | |
| 		solverConstraint.m_contactNormal1 = contactNormal;
 | |
| 	} else
 | |
| 	{
 | |
| 		btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
 | |
| 		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | |
| 		solverConstraint.m_contactNormal1 = contactNormal;
 | |
| 		solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	if (multiBodyB)
 | |
| 	{
 | |
| 		if (solverConstraint.m_linkB<0)
 | |
| 		{
 | |
| 			rel_pos2 = pos2 - multiBodyB->getBasePos();
 | |
| 		} else
 | |
| 		{
 | |
| 			rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
 | |
| 		}
 | |
| 
 | |
| 		const int ndofB  = multiBodyB->getNumDofs() + 6;
 | |
| 
 | |
| 		solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
 | |
| 		if (solverConstraint.m_deltaVelBindex <0)
 | |
| 		{
 | |
| 			solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
 | |
| 			multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
 | |
| 			m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
 | |
| 		}
 | |
| 
 | |
| 		solverConstraint.m_jacBindex = m_data.m_jacobians.size();
 | |
| 
 | |
| 		m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
 | |
| 		m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
 | |
| 		btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | |
| 
 | |
| 		multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | |
| 		multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
 | |
| 		
 | |
| 		btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);		
 | |
| 		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
 | |
| 		solverConstraint.m_contactNormal2 = -contactNormal;
 | |
| 	
 | |
| 	} else
 | |
| 	{
 | |
| 		btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);		
 | |
| 		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
 | |
| 		solverConstraint.m_contactNormal2 = -contactNormal;
 | |
| 	
 | |
| 		solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 						
 | |
| 		btVector3 vec;
 | |
| 		btScalar denom0 = 0.f;
 | |
| 		btScalar denom1 = 0.f;
 | |
| 		btScalar* jacB = 0;
 | |
| 		btScalar* jacA = 0;
 | |
| 		btScalar* lambdaA =0;
 | |
| 		btScalar* lambdaB =0;
 | |
| 		int ndofA  = 0;
 | |
| 		if (multiBodyA)
 | |
| 		{
 | |
| 			ndofA  = multiBodyA->getNumDofs() + 6;
 | |
| 			jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | |
| 			lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | |
| 			for (int i = 0; i < ndofA; ++i)
 | |
| 			{
 | |
| 				btScalar j = jacA[i] ;
 | |
| 				btScalar l =lambdaA[i];
 | |
| 				denom0 += j*l;
 | |
| 			}
 | |
| 		} else
 | |
| 		{
 | |
| 			if (rb0)
 | |
| 			{
 | |
| 				vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
 | |
| 				denom0 = rb0->getInvMass() + contactNormal.dot(vec);
 | |
| 			}
 | |
| 		}
 | |
| 		if (multiBodyB)
 | |
| 		{
 | |
| 			const int ndofB  = multiBodyB->getNumDofs() + 6;
 | |
| 			jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | |
| 			lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
 | |
| 			for (int i = 0; i < ndofB; ++i)
 | |
| 			{
 | |
| 				btScalar j = jacB[i] ;
 | |
| 				btScalar l =lambdaB[i];
 | |
| 				denom1 += j*l;
 | |
| 			}
 | |
| 
 | |
| 		} else
 | |
| 		{
 | |
| 			if (rb1)
 | |
| 			{
 | |
| 				vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
 | |
| 				denom1 = rb1->getInvMass() + contactNormal.dot(vec);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		 
 | |
| 
 | |
| 		 btScalar d = denom0+denom1+cfm;
 | |
| 		 if (d>SIMD_EPSILON)
 | |
| 		 {
 | |
| 			solverConstraint.m_jacDiagABInv = relaxation/(d);
 | |
| 		 } else
 | |
| 		 {
 | |
| 			//disable the constraint row to handle singularity/redundant constraint
 | |
| 			solverConstraint.m_jacDiagABInv  = 0.f;
 | |
| 		 }
 | |
| 		
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	//compute rhs and remaining solverConstraint fields
 | |
| 
 | |
| 	
 | |
| 
 | |
| 	btScalar restitution = 0.f;
 | |
|     btScalar distance = 0;
 | |
|     if (!isFriction)
 | |
|     {
 | |
|         distance = cp.getDistance()+infoGlobal.m_linearSlop;
 | |
|     } else
 | |
|     {
 | |
|         if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
 | |
|         {
 | |
|           distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(contactNormal);
 | |
|         }
 | |
|     }
 | |
|   
 | |
|     
 | |
| 	btScalar rel_vel = 0.f;
 | |
| 	int ndofA  = 0;
 | |
| 	int ndofB  = 0;
 | |
| 	{
 | |
| 
 | |
| 		btVector3 vel1,vel2;
 | |
| 		if (multiBodyA)
 | |
| 		{
 | |
| 			ndofA  = multiBodyA->getNumDofs() + 6;
 | |
| 			btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | |
| 			for (int i = 0; i < ndofA ; ++i) 
 | |
| 				rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
 | |
| 		} else
 | |
| 		{
 | |
| 			if (rb0)
 | |
| 			{
 | |
| 				rel_vel += (rb0->getVelocityInLocalPoint(rel_pos1) + 
 | |
| 							(rb0->getTotalTorque()*rb0->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos1)+
 | |
| 							rb0->getTotalForce()*rb0->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal1);
 | |
| 			}
 | |
| 		}
 | |
| 		if (multiBodyB)
 | |
| 		{
 | |
| 			ndofB  = multiBodyB->getNumDofs() + 6;
 | |
| 			btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | |
| 			for (int i = 0; i < ndofB ; ++i) 
 | |
| 				rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
 | |
| 
 | |
| 		} else
 | |
| 		{
 | |
| 			if (rb1)
 | |
| 			{
 | |
| 				rel_vel += (rb1->getVelocityInLocalPoint(rel_pos2)+
 | |
| 					(rb1->getTotalTorque()*rb1->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos2) +
 | |
| 					rb1->getTotalForce()*rb1->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal2);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		solverConstraint.m_friction = cp.m_combinedFriction;
 | |
| 
 | |
| 		if(!isFriction)
 | |
| 		{
 | |
| 			restitution =  restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);	
 | |
| 			if (restitution <= btScalar(0.))
 | |
| 			{
 | |
| 				restitution = 0.f;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	///warm starting (or zero if disabled)
 | |
| 	//disable warmstarting for btMultiBody, it has issues gaining energy (==explosion)
 | |
| 	if (0)//infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | |
| 	{
 | |
| 		solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
 | |
| 
 | |
| 		if (solverConstraint.m_appliedImpulse)
 | |
| 		{
 | |
| 			if (multiBodyA)
 | |
| 			{
 | |
| 				btScalar impulse = solverConstraint.m_appliedImpulse;
 | |
| 				btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | |
| 				multiBodyA->applyDeltaVeeMultiDof(deltaV,impulse);
 | |
| 				
 | |
| 				applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
 | |
| 			} else
 | |
| 			{
 | |
| 				if (rb0)
 | |
| 					bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
 | |
| 			}
 | |
| 			if (multiBodyB)
 | |
| 			{
 | |
| 				btScalar impulse = solverConstraint.m_appliedImpulse;
 | |
| 				btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
 | |
| 				multiBodyB->applyDeltaVeeMultiDof(deltaV,impulse);
 | |
| 				applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
 | |
| 			} else
 | |
| 			{
 | |
| 				if (rb1)
 | |
| 					bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
 | |
| 			}
 | |
| 		}
 | |
| 	} else
 | |
| 	{
 | |
| 		solverConstraint.m_appliedImpulse = 0.f;
 | |
| 	}
 | |
| 
 | |
| 	solverConstraint.m_appliedPushImpulse = 0.f;
 | |
| 
 | |
| 	{
 | |
| 
 | |
| 		btScalar positionalError = 0.f;
 | |
| 		btScalar velocityError = restitution - rel_vel;// * damping;	//note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
 | |
| 		if (isFriction)
 | |
| 		{
 | |
| 			positionalError = -distance * erp/infoGlobal.m_timeStep;
 | |
| 		} else
 | |
| 		{
 | |
|     			if (distance>0)
 | |
| 			{
 | |
| 				positionalError = 0;
 | |
| 				velocityError -= distance / infoGlobal.m_timeStep;
 | |
| 
 | |
| 			} else
 | |
| 			{
 | |
| 				positionalError = -distance * erp/infoGlobal.m_timeStep;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		btScalar  penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
 | |
| 		btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
 | |
| 
 | |
| 		if(!isFriction)
 | |
| 		{
 | |
| 		//	if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
 | |
| 			{
 | |
| 				//combine position and velocity into rhs
 | |
| 				solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
 | |
| 				solverConstraint.m_rhsPenetration = 0.f;
 | |
| 
 | |
| 			}
 | |
| 		/*else
 | |
| 			{
 | |
| 				//split position and velocity into rhs and m_rhsPenetration
 | |
| 				solverConstraint.m_rhs = velocityImpulse;
 | |
| 				solverConstraint.m_rhsPenetration = penetrationImpulse;
 | |
| 			}
 | |
| 			*/
 | |
| 			solverConstraint.m_lowerLimit = 0;
 | |
| 			solverConstraint.m_upperLimit = 1e10f;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
 | |
| 			solverConstraint.m_rhsPenetration = 0.f;
 | |
| 			solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
 | |
| 			solverConstraint.m_upperLimit = solverConstraint.m_friction;
 | |
| 		}
 | |
| 
 | |
| 		solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
 | |
| 		
 | |
| 
 | |
| 
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
 | |
|                                                                   const btVector3& constraintNormal,
 | |
|                                                                   btManifoldPoint& cp,
 | |
|                                                                     btScalar combinedTorsionalFriction,
 | |
|                                                                     const btContactSolverInfo& infoGlobal,
 | |
|                                                                   btScalar& relaxation,
 | |
|                                                                   bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
 | |
| {
 | |
|     
 | |
|     BT_PROFILE("setupMultiBodyRollingFrictionConstraint");
 | |
|     btVector3 rel_pos1;
 | |
|     btVector3 rel_pos2;
 | |
|     
 | |
|     btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
 | |
|     btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
 | |
|     
 | |
|     const btVector3& pos1 = cp.getPositionWorldOnA();
 | |
|     const btVector3& pos2 = cp.getPositionWorldOnB();
 | |
|     
 | |
|     btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
 | |
|     btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
 | |
|     
 | |
|     btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
 | |
|     btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
 | |
|     
 | |
|     if (bodyA)
 | |
|         rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
 | |
|     if (bodyB)
 | |
|         rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
 | |
|     
 | |
|     relaxation = infoGlobal.m_sor;
 | |
|     
 | |
|    // btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
 | |
|     
 | |
|     
 | |
|     if (multiBodyA)
 | |
|     {
 | |
|         if (solverConstraint.m_linkA<0)
 | |
|         {
 | |
|             rel_pos1 = pos1 - multiBodyA->getBasePos();
 | |
|         } else
 | |
|         {
 | |
|             rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
 | |
|         }
 | |
|         const int ndofA  = multiBodyA->getNumDofs() + 6;
 | |
|         
 | |
|         solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
 | |
|         
 | |
|         if (solverConstraint.m_deltaVelAindex <0)
 | |
|         {
 | |
|             solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
 | |
|             multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
 | |
|             m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
 | |
|         } else
 | |
|         {
 | |
|             btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
 | |
|         }
 | |
|         
 | |
|         solverConstraint.m_jacAindex = m_data.m_jacobians.size();
 | |
|         m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
 | |
|         m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
 | |
|         btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | |
|         
 | |
|         btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
 | |
|         multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), constraintNormal, btVector3(0,0,0), jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | |
|         btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | |
|         multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
 | |
|         
 | |
|         btVector3 torqueAxis0 = -constraintNormal;
 | |
|         solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | |
|         solverConstraint.m_contactNormal1 = btVector3(0,0,0);
 | |
|     } else
 | |
|     {
 | |
|         btVector3 torqueAxis0 = -constraintNormal;
 | |
|         solverConstraint.m_relpos1CrossNormal = torqueAxis0;
 | |
|         solverConstraint.m_contactNormal1 = btVector3(0,0,0);
 | |
|         solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
 | |
|     }
 | |
|     
 | |
|     
 | |
|     
 | |
|     if (multiBodyB)
 | |
|     {
 | |
|         if (solverConstraint.m_linkB<0)
 | |
|         {
 | |
|             rel_pos2 = pos2 - multiBodyB->getBasePos();
 | |
|         } else
 | |
|         {
 | |
|             rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
 | |
|         }
 | |
|         
 | |
|         const int ndofB  = multiBodyB->getNumDofs() + 6;
 | |
|         
 | |
|         solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
 | |
|         if (solverConstraint.m_deltaVelBindex <0)
 | |
|         {
 | |
|             solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
 | |
|             multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
 | |
|             m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
 | |
|         }
 | |
|         
 | |
|         solverConstraint.m_jacBindex = m_data.m_jacobians.size();
 | |
|         
 | |
|         m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
 | |
|         m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
 | |
|         btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
 | |
|         
 | |
|         multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -constraintNormal, btVector3(0,0,0), &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
 | |
|         multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
 | |
|         
 | |
|         btVector3 torqueAxis1 = constraintNormal;
 | |
|         solverConstraint.m_relpos2CrossNormal = torqueAxis1;
 | |
|         solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
 | |
|         
 | |
|     } else
 | |
|     {
 | |
|         btVector3 torqueAxis1 = constraintNormal;
 | |
|         solverConstraint.m_relpos2CrossNormal = torqueAxis1;
 | |
|         solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
 | |
|         
 | |
|         solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
 | |
|     }
 | |
|     
 | |
|     {
 | |
|         
 | |
|         btScalar denom0 = 0.f;
 | |
|         btScalar denom1 = 0.f;
 | |
|         btScalar* jacB = 0;
 | |
|         btScalar* jacA = 0;
 | |
|         btScalar* lambdaA =0;
 | |
|         btScalar* lambdaB =0;
 | |
|         int ndofA  = 0;
 | |
|         if (multiBodyA)
 | |
|         {
 | |
|             ndofA  = multiBodyA->getNumDofs() + 6;
 | |
|             jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | |
|             lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
 | |
|             for (int i = 0; i < ndofA; ++i)
 | |
|             {
 | |
|                 btScalar j = jacA[i] ;
 | |
|                 btScalar l =lambdaA[i];
 | |
|                 denom0 += j*l;
 | |
|             }
 | |
|         } else
 | |
|         {
 | |
|             if (rb0)
 | |
|             {
 | |
| 				btVector3 iMJaA = rb0?rb0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
 | |
| 				denom0 = iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
 | |
|             }
 | |
|         }
 | |
|         if (multiBodyB)
 | |
|         {
 | |
|             const int ndofB  = multiBodyB->getNumDofs() + 6;
 | |
|             jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | |
|             lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
 | |
|             for (int i = 0; i < ndofB; ++i)
 | |
|             {
 | |
|                 btScalar j = jacB[i] ;
 | |
|                 btScalar l =lambdaB[i];
 | |
|                 denom1 += j*l;
 | |
|             }
 | |
|             
 | |
|         } else
 | |
|         {
 | |
|             if (rb1)
 | |
|             {
 | |
| 				btVector3 iMJaB = rb1?rb1->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
 | |
| 				denom1 = iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         
 | |
|         
 | |
|         btScalar d = denom0+denom1+infoGlobal.m_globalCfm;
 | |
|         if (d>SIMD_EPSILON)
 | |
|         {
 | |
|             solverConstraint.m_jacDiagABInv = relaxation/(d);
 | |
|         } else
 | |
|         {
 | |
|             //disable the constraint row to handle singularity/redundant constraint
 | |
|             solverConstraint.m_jacDiagABInv  = 0.f;
 | |
|         }
 | |
|         
 | |
|     }
 | |
|     
 | |
|     
 | |
|     //compute rhs and remaining solverConstraint fields
 | |
|     
 | |
|     
 | |
|     
 | |
|     btScalar restitution = 0.f;
 | |
|     btScalar penetration = isFriction? 0 : cp.getDistance();
 | |
|     
 | |
|     btScalar rel_vel = 0.f;
 | |
|     int ndofA  = 0;
 | |
|     int ndofB  = 0;
 | |
|     {
 | |
|         
 | |
|         btVector3 vel1,vel2;
 | |
|         if (multiBodyA)
 | |
|         {
 | |
|             ndofA  = multiBodyA->getNumDofs() + 6;
 | |
|             btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
 | |
|             for (int i = 0; i < ndofA ; ++i)
 | |
|                 rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
 | |
|         } else
 | |
|         {
 | |
|             if (rb0)
 | |
|             {
 | |
| 				btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
 | |
| 				rel_vel += solverConstraint.m_contactNormal1.dot(rb0?solverBodyA->m_linearVelocity+solverBodyA->m_externalForceImpulse:btVector3(0,0,0))
 | |
| 				+ solverConstraint.m_relpos1CrossNormal.dot(rb0?solverBodyA->m_angularVelocity:btVector3(0,0,0));
 | |
| 	
 | |
|             }
 | |
|         }
 | |
|         if (multiBodyB)
 | |
|         {
 | |
|             ndofB  = multiBodyB->getNumDofs() + 6;
 | |
|             btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
 | |
|             for (int i = 0; i < ndofB ; ++i)
 | |
|                 rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
 | |
|             
 | |
|         } else
 | |
|         {
 | |
|             if (rb1)
 | |
|             {
 | |
| 				btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
 | |
| 				rel_vel += solverConstraint.m_contactNormal2.dot(rb1?solverBodyB->m_linearVelocity+solverBodyB->m_externalForceImpulse:btVector3(0,0,0))
 | |
| 			+ solverConstraint.m_relpos2CrossNormal.dot(rb1?solverBodyB->m_angularVelocity:btVector3(0,0,0));
 | |
| 
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         solverConstraint.m_friction =combinedTorsionalFriction;
 | |
|         
 | |
|         if(!isFriction)
 | |
|         {
 | |
|             restitution =  restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
 | |
|             if (restitution <= btScalar(0.))
 | |
|             {
 | |
|                 restitution = 0.f;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     
 | |
|     solverConstraint.m_appliedImpulse = 0.f;
 | |
|     solverConstraint.m_appliedPushImpulse = 0.f;
 | |
|     
 | |
|     {
 | |
|         
 | |
|         btScalar velocityError = 0 - rel_vel;// * damping;	//note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
 | |
|         
 | |
|        
 | |
|         
 | |
|         btScalar velocityImpulse = velocityError*solverConstraint.m_jacDiagABInv;
 | |
|         
 | |
|         solverConstraint.m_rhs = velocityImpulse;
 | |
|         solverConstraint.m_rhsPenetration = 0.f;
 | |
|         solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
 | |
|         solverConstraint.m_upperLimit = solverConstraint.m_friction;
 | |
|         
 | |
|         solverConstraint.m_cfm = infoGlobal.m_globalCfm*solverConstraint.m_jacDiagABInv;
 | |
|         
 | |
|         
 | |
|         
 | |
|     }
 | |
|     
 | |
| }
 | |
| 
 | |
| btMultiBodySolverConstraint&	btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
 | |
| {
 | |
| 	BT_PROFILE("addMultiBodyFrictionConstraint");
 | |
| 	btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
 | |
|     solverConstraint.m_orgConstraint = 0;
 | |
|     solverConstraint.m_orgDofIndex = -1;
 | |
|     
 | |
| 	solverConstraint.m_frictionIndex = frictionIndex;
 | |
| 	bool isFriction = true;
 | |
| 
 | |
| 	const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | |
| 	const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | |
| 	
 | |
| 	btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
 | |
| 	btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
 | |
| 
 | |
| 	int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
 | |
| 	int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
 | |
| 
 | |
| 	solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | |
| 	solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | |
| 	solverConstraint.m_multiBodyA = mbA;
 | |
| 	if (mbA)
 | |
| 		solverConstraint.m_linkA = fcA->m_link;
 | |
| 
 | |
| 	solverConstraint.m_multiBodyB = mbB;
 | |
| 	if (mbB)
 | |
| 		solverConstraint.m_linkB = fcB->m_link;
 | |
| 
 | |
| 	solverConstraint.m_originalContactPoint = &cp;
 | |
| 
 | |
| 	setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
 | |
| 	return solverConstraint;
 | |
| }
 | |
| 
 | |
| btMultiBodySolverConstraint&	btMultiBodyConstraintSolver::addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,
 | |
|                                                                 btScalar combinedTorsionalFriction,
 | |
|                                                                                                      btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
 | |
| {
 | |
|     BT_PROFILE("addMultiBodyRollingFrictionConstraint");
 | |
|     btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
 | |
|     solverConstraint.m_orgConstraint = 0;
 | |
|     solverConstraint.m_orgDofIndex = -1;
 | |
|     
 | |
|     solverConstraint.m_frictionIndex = frictionIndex;
 | |
|     bool isFriction = true;
 | |
|     
 | |
|     const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | |
|     const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | |
|     
 | |
|     btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
 | |
|     btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
 | |
|     
 | |
|     int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
 | |
|     int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
 | |
|     
 | |
|     solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | |
|     solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | |
|     solverConstraint.m_multiBodyA = mbA;
 | |
|     if (mbA)
 | |
|         solverConstraint.m_linkA = fcA->m_link;
 | |
|     
 | |
|     solverConstraint.m_multiBodyB = mbB;
 | |
|     if (mbB)
 | |
|         solverConstraint.m_linkB = fcB->m_link;
 | |
|     
 | |
|     solverConstraint.m_originalContactPoint = &cp;
 | |
|     
 | |
|     setupMultiBodyTorsionalFrictionConstraint(solverConstraint, normalAxis, cp, combinedTorsionalFriction,infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
 | |
|     return solverConstraint;
 | |
| }
 | |
| 
 | |
| void	btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
 | |
| {
 | |
| 	const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | |
| 	const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | |
| 	
 | |
| 	btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
 | |
| 	btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
 | |
| 
 | |
| 	btCollisionObject* colObj0=0,*colObj1=0;
 | |
| 
 | |
| 	colObj0 = (btCollisionObject*)manifold->getBody0();
 | |
| 	colObj1 = (btCollisionObject*)manifold->getBody1();
 | |
| 
 | |
| 	int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
 | |
| 	int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
 | |
| 
 | |
| //	btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
 | |
| //	btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
 | |
| 
 | |
| 
 | |
| 	///avoid collision response between two static objects
 | |
| //	if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
 | |
| 	//	return;
 | |
| 
 | |
|     //only a single rollingFriction per manifold
 | |
|     int rollingFriction=1;
 | |
|     
 | |
| 	for (int j=0;j<manifold->getNumContacts();j++)
 | |
| 	{
 | |
| 
 | |
| 		btManifoldPoint& cp = manifold->getContactPoint(j);
 | |
| 
 | |
| 		if (cp.getDistance() <= manifold->getContactProcessingThreshold())
 | |
| 		{
 | |
| 		
 | |
| 			btScalar relaxation;
 | |
| 
 | |
| 			int frictionIndex = m_multiBodyNormalContactConstraints.size();
 | |
| 
 | |
| 			btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
 | |
| 
 | |
| 	//		btRigidBody* rb0 = btRigidBody::upcast(colObj0);
 | |
| 	//		btRigidBody* rb1 = btRigidBody::upcast(colObj1);
 | |
|             solverConstraint.m_orgConstraint = 0;
 | |
|             solverConstraint.m_orgDofIndex = -1;
 | |
| 			solverConstraint.m_solverBodyIdA = solverBodyIdA;
 | |
| 			solverConstraint.m_solverBodyIdB = solverBodyIdB;
 | |
| 			solverConstraint.m_multiBodyA = mbA;
 | |
| 			if (mbA)
 | |
| 				solverConstraint.m_linkA = fcA->m_link;
 | |
| 
 | |
| 			solverConstraint.m_multiBodyB = mbB;
 | |
| 			if (mbB)
 | |
| 				solverConstraint.m_linkB = fcB->m_link;
 | |
| 
 | |
| 			solverConstraint.m_originalContactPoint = &cp;
 | |
| 
 | |
| 			bool isFriction = false;
 | |
| 			setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
 | |
| 
 | |
| //			const btVector3& pos1 = cp.getPositionWorldOnA();
 | |
| //			const btVector3& pos2 = cp.getPositionWorldOnB();
 | |
| 
 | |
| 			/////setup the friction constraints
 | |
| #define ENABLE_FRICTION
 | |
| #ifdef ENABLE_FRICTION
 | |
| 			solverConstraint.m_frictionIndex = frictionIndex;
 | |
| 
 | |
| 			///Bullet has several options to set the friction directions
 | |
| 			///By default, each contact has only a single friction direction that is recomputed automatically every frame
 | |
| 			///based on the relative linear velocity.
 | |
| 			///If the relative velocity is zero, it will automatically compute a friction direction.
 | |
| 			
 | |
| 			///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
 | |
| 			///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
 | |
| 			///
 | |
| 			///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
 | |
| 			///
 | |
| 			///The user can manually override the friction directions for certain contacts using a contact callback, 
 | |
| 			///and set the cp.m_lateralFrictionInitialized to true
 | |
| 			///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
 | |
| 			///this will give a conveyor belt effect
 | |
| 			///
 | |
| 
 | |
| 			btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
 | |
| 			cp.m_lateralFrictionDir1.normalize();
 | |
| 			cp.m_lateralFrictionDir2.normalize();
 | |
| 
 | |
|             if (rollingFriction > 0 )
 | |
|              {
 | |
|                 if (cp.m_combinedSpinningFriction>0)
 | |
|                 {
 | |
|                     addMultiBodyTorsionalFrictionConstraint(cp.m_normalWorldOnB,manifold,frictionIndex,cp,cp.m_combinedSpinningFriction, colObj0,colObj1, relaxation,infoGlobal);
 | |
|                 }
 | |
|                 if (cp.m_combinedRollingFriction>0)
 | |
|                 {
 | |
| 
 | |
| 					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
 | |
| 					
 | |
| 					if (cp.m_lateralFrictionDir1.length()>0.001)
 | |
| 	                    addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
 | |
| 
 | |
| 					if (cp.m_lateralFrictionDir2.length()>0.001)
 | |
|                     addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
 | |
|                 }
 | |
|               rollingFriction--;
 | |
|             }
 | |
| 			if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
 | |
| 			{/*
 | |
| 				cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
 | |
| 				btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
 | |
| 				if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
 | |
| 				{
 | |
| 					cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
 | |
| 					if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 					{
 | |
| 						cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
 | |
| 						cp.m_lateralFrictionDir2.normalize();//??
 | |
| 						applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
 | |
| 
 | |
| 					}
 | |
| 
 | |
| 					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
 | |
| 
 | |
| 				} else
 | |
| 				*/
 | |
| 				{
 | |
| 					
 | |
| 
 | |
| 					applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 					addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
 | |
|                     
 | |
| 
 | |
| 					if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 					{
 | |
| 						applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
 | |
| 						addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
 | |
| 					}
 | |
| 
 | |
| 					if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
 | |
| 					{
 | |
| 						cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 			} else
 | |
| 			{
 | |
| 				addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_frictionCFM);
 | |
| 
 | |
| 				if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 					addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_frictionCFM);
 | |
| 
 | |
| 				//setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
 | |
| 				//todo:
 | |
| 				solverConstraint.m_appliedImpulse = 0.f;
 | |
| 				solverConstraint.m_appliedPushImpulse = 0.f;
 | |
| 			}
 | |
| 		
 | |
| 
 | |
| #endif //ENABLE_FRICTION
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
 | |
| {
 | |
| 	//btPersistentManifold* manifold = 0;
 | |
| 
 | |
| 	for (int i=0;i<numManifolds;i++)
 | |
| 	{
 | |
| 		btPersistentManifold* manifold= manifoldPtr[i];
 | |
| 		const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
 | |
| 		const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
 | |
| 		if (!fcA && !fcB)
 | |
| 		{
 | |
| 			//the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
 | |
| 			convertContact(manifold,infoGlobal);
 | |
| 		} else
 | |
| 		{
 | |
| 			convertMultiBodyContact(manifold,infoGlobal);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//also convert the multibody constraints, if any
 | |
| 
 | |
| 	
 | |
| 	for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
 | |
| 	{
 | |
| 		btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
 | |
| 		m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
 | |
| 		m_data.m_fixedBodyId = m_fixedBodyId;
 | |
| 		
 | |
| 		c->createConstraintRows(m_multiBodyNonContactConstraints,m_data,	infoGlobal);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
 | |
| {
 | |
| 	return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static void applyJointFeedback(btMultiBodyJacobianData& data, const btMultiBodySolverConstraint& solverConstraint, int jacIndex, btMultiBody* mb, btScalar appliedImpulse)
 | |
| {
 | |
| 	if (appliedImpulse!=0 && mb->internalNeedsJointFeedback())
 | |
| 	{
 | |
| 		//todo: get rid of those temporary memory allocations for the joint feedback
 | |
| 		btAlignedObjectArray<btScalar> forceVector;
 | |
| 		int numDofsPlusBase = 6+mb->getNumDofs();
 | |
| 		forceVector.resize(numDofsPlusBase);
 | |
| 		for (int i=0;i<numDofsPlusBase;i++)
 | |
| 		{
 | |
| 			forceVector[i] = data.m_jacobians[jacIndex+i]*appliedImpulse;
 | |
| 		}
 | |
| 		btAlignedObjectArray<btScalar> output;
 | |
| 		output.resize(numDofsPlusBase);
 | |
| 		bool applyJointFeedback = true;
 | |
| 		mb->calcAccelerationDeltasMultiDof(&forceVector[0],&output[0],data.scratch_r,data.scratch_v,applyJointFeedback);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| void btMultiBodyConstraintSolver::writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint& c, btScalar deltaTime)
 | |
| {
 | |
| #if 1 
 | |
| 	
 | |
| 	//bod->addBaseForce(m_gravity * bod->getBaseMass());
 | |
| 	//bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
 | |
| 
 | |
| 	if (c.m_orgConstraint)
 | |
| 	{
 | |
| 		c.m_orgConstraint->internalSetAppliedImpulse(c.m_orgDofIndex,c.m_appliedImpulse);
 | |
| 	}
 | |
| 	
 | |
| 
 | |
| 	if (c.m_multiBodyA)
 | |
| 	{
 | |
| 		
 | |
| 		c.m_multiBodyA->setCompanionId(-1);
 | |
| 		btVector3 force = c.m_contactNormal1*(c.m_appliedImpulse/deltaTime);
 | |
| 		btVector3 torque = c.m_relpos1CrossNormal*(c.m_appliedImpulse/deltaTime);
 | |
| 		if (c.m_linkA<0)
 | |
| 		{
 | |
| 			c.m_multiBodyA->addBaseConstraintForce(force);
 | |
| 			c.m_multiBodyA->addBaseConstraintTorque(torque);
 | |
| 		} else
 | |
| 		{
 | |
| 			c.m_multiBodyA->addLinkConstraintForce(c.m_linkA,force);
 | |
| 				//b3Printf("force = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
 | |
| 			c.m_multiBodyA->addLinkConstraintTorque(c.m_linkA,torque);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if (c.m_multiBodyB)
 | |
| 	{
 | |
| 		{
 | |
| 			c.m_multiBodyB->setCompanionId(-1);
 | |
| 			btVector3 force = c.m_contactNormal2*(c.m_appliedImpulse/deltaTime);
 | |
| 			btVector3 torque = c.m_relpos2CrossNormal*(c.m_appliedImpulse/deltaTime);
 | |
| 			if (c.m_linkB<0)
 | |
| 			{
 | |
| 				c.m_multiBodyB->addBaseConstraintForce(force);
 | |
| 				c.m_multiBodyB->addBaseConstraintTorque(torque);
 | |
| 			} else
 | |
| 			{
 | |
| 				{
 | |
| 					c.m_multiBodyB->addLinkConstraintForce(c.m_linkB,force);
 | |
| 					//b3Printf("t = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
 | |
| 					c.m_multiBodyB->addLinkConstraintTorque(c.m_linkB,torque);
 | |
| 				}
 | |
| 					
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifndef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
 | |
| 
 | |
| 	if (c.m_multiBodyA)
 | |
| 	{
 | |
| 		
 | |
| 		if(c.m_multiBodyA->isMultiDof())
 | |
| 		{
 | |
| 			c.m_multiBodyA->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	if (c.m_multiBodyB)
 | |
| 	{
 | |
| 		if(c.m_multiBodyB->isMultiDof())
 | |
| 		{
 | |
| 			c.m_multiBodyB->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
 | |
| {
 | |
| 	BT_PROFILE("btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish");
 | |
| 	int numPoolConstraints = m_multiBodyNormalContactConstraints.size();
 | |
| 	
 | |
| 
 | |
| 	//write back the delta v to the multi bodies, either as applied impulse (direct velocity change) 
 | |
| 	//or as applied force, so we can measure the joint reaction forces easier
 | |
| 	for (int i=0;i<numPoolConstraints;i++)
 | |
| 	{
 | |
| 		btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[i];
 | |
| 		writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
 | |
| 
 | |
| 		writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],infoGlobal.m_timeStep);
 | |
| 
 | |
| 		if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 		{
 | |
| 			writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],infoGlobal.m_timeStep);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
 | |
| 	{
 | |
| 		btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
 | |
| 		writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
 | |
| 	{
 | |
| 		BT_PROFILE("warm starting write back");
 | |
| 		for (int j=0;j<numPoolConstraints;j++)
 | |
| 		{
 | |
| 			const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
 | |
| 			btManifoldPoint* pt = (btManifoldPoint*) solverConstraint.m_originalContactPoint;
 | |
| 			btAssert(pt);
 | |
| 			pt->m_appliedImpulse = solverConstraint.m_appliedImpulse;
 | |
| 			pt->m_appliedImpulseLateral1 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
 | |
| 			
 | |
| 			//printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
 | |
| 			if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 			{
 | |
| 				pt->m_appliedImpulseLateral2 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse;
 | |
| 			}
 | |
| 			//do a callback here?
 | |
| 		}
 | |
| 	}
 | |
| #if 0
 | |
| 	//multibody joint feedback
 | |
| 	{
 | |
| 		BT_PROFILE("multi body joint feedback");
 | |
| 		for (int j=0;j<numPoolConstraints;j++)
 | |
| 		{
 | |
| 			const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
 | |
| 		
 | |
| 			//apply the joint feedback into all links of the btMultiBody
 | |
| 			//todo: double-check the signs of the applied impulse
 | |
| 
 | |
| 			if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
 | |
| 			{
 | |
| 				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | |
| 			}
 | |
| 			if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
 | |
| 			{
 | |
| 				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
 | |
| 			}
 | |
| #if 0
 | |
| 			if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA->isMultiDof())
 | |
| 			{
 | |
| 				applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
 | |
| 					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacAindex,
 | |
| 					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA,
 | |
| 					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | |
| 
 | |
| 			}
 | |
| 			if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB->isMultiDof())
 | |
| 			{
 | |
| 				applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
 | |
| 					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacBindex,
 | |
| 					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB,
 | |
| 					m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
 | |
| 			}
 | |
| 		
 | |
| 			if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
 | |
| 			{
 | |
| 				if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA->isMultiDof())
 | |
| 				{
 | |
| 					applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
 | |
| 						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacAindex,
 | |
| 						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA,
 | |
| 						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | |
| 				}
 | |
| 
 | |
| 				if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB->isMultiDof())
 | |
| 				{
 | |
| 					applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
 | |
| 						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacBindex,
 | |
| 						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB,
 | |
| 						m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
 | |
| 				}
 | |
| 			}
 | |
| #endif
 | |
| 		}
 | |
| 	
 | |
| 		for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
 | |
| 		{
 | |
| 			const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
 | |
| 			if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
 | |
| 			{
 | |
| 				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | |
| 			}
 | |
| 			if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
 | |
| 			{
 | |
| 				applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	numPoolConstraints = m_multiBodyNonContactConstraints.size();
 | |
| 
 | |
| #if 0
 | |
| 	//@todo: m_originalContactPoint is not initialized for btMultiBodySolverConstraint
 | |
| 	for (int i=0;i<numPoolConstraints;i++)
 | |
| 	{
 | |
| 		const btMultiBodySolverConstraint& c = m_multiBodyNonContactConstraints[i];
 | |
| 
 | |
| 		btTypedConstraint* constr = (btTypedConstraint*)c.m_originalContactPoint;
 | |
| 		btJointFeedback* fb = constr->getJointFeedback();
 | |
| 		if (fb)
 | |
| 		{
 | |
| 			fb->m_appliedForceBodyA += c.m_contactNormal1*c.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
 | |
| 			fb->m_appliedForceBodyB += c.m_contactNormal2*c.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
 | |
| 			fb->m_appliedTorqueBodyA += c.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep;
 | |
| 			fb->m_appliedTorqueBodyB += c.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
 | |
| 			
 | |
| 		}
 | |
| 
 | |
| 		constr->internalSetAppliedImpulse(c.m_appliedImpulse);
 | |
| 		if (btFabs(c.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
 | |
| 		{
 | |
| 			constr->setEnabled(false);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| #endif 
 | |
| #endif
 | |
| 
 | |
| 	return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies,numBodies,infoGlobal);
 | |
| }
 | |
| 
 | |
| 
 | |
| void  btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
 | |
| {
 | |
| 	//printf("solveMultiBodyGroup start\n");
 | |
| 	m_tmpMultiBodyConstraints = multiBodyConstraints;
 | |
| 	m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
 | |
| 	
 | |
| 	btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
 | |
| 
 | |
| 	m_tmpMultiBodyConstraints = 0;
 | |
| 	m_tmpNumMultiBodyConstraints = 0;
 | |
| 	
 | |
| 
 | |
| }
 |