forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			652 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			652 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it freely,
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| /// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
 | |
| /// Added support for generic constraint solver through getInfo1/getInfo2 methods
 | |
| 
 | |
| /*
 | |
| 2007-09-09
 | |
| btGeneric6DofConstraint Refactored by Francisco Le?n
 | |
| email: projectileman@yahoo.com
 | |
| http://gimpact.sf.net
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef BT_GENERIC_6DOF_CONSTRAINT_H
 | |
| #define BT_GENERIC_6DOF_CONSTRAINT_H
 | |
| 
 | |
| #include "LinearMath/btVector3.h"
 | |
| #include "btJacobianEntry.h"
 | |
| #include "btTypedConstraint.h"
 | |
| 
 | |
| class btRigidBody;
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef BT_USE_DOUBLE_PRECISION
 | |
| #define btGeneric6DofConstraintData2		btGeneric6DofConstraintDoubleData2
 | |
| #define btGeneric6DofConstraintDataName	"btGeneric6DofConstraintDoubleData2"
 | |
| #else
 | |
| #define btGeneric6DofConstraintData2		btGeneric6DofConstraintData
 | |
| #define btGeneric6DofConstraintDataName	"btGeneric6DofConstraintData"
 | |
| #endif //BT_USE_DOUBLE_PRECISION
 | |
| 
 | |
| 
 | |
| //! Rotation Limit structure for generic joints
 | |
| class btRotationalLimitMotor
 | |
| {
 | |
| public:
 | |
|     //! limit_parameters
 | |
|     //!@{
 | |
|     btScalar m_loLimit;//!< joint limit
 | |
|     btScalar m_hiLimit;//!< joint limit
 | |
|     btScalar m_targetVelocity;//!< target motor velocity
 | |
|     btScalar m_maxMotorForce;//!< max force on motor
 | |
|     btScalar m_maxLimitForce;//!< max force on limit
 | |
|     btScalar m_damping;//!< Damping.
 | |
|     btScalar m_limitSoftness;//! Relaxation factor
 | |
|     btScalar m_normalCFM;//!< Constraint force mixing factor
 | |
|     btScalar m_stopERP;//!< Error tolerance factor when joint is at limit
 | |
|     btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit
 | |
|     btScalar m_bounce;//!< restitution factor
 | |
|     bool m_enableMotor;
 | |
| 
 | |
|     //!@}
 | |
| 
 | |
|     //! temp_variables
 | |
|     //!@{
 | |
|     btScalar m_currentLimitError;//!  How much is violated this limit
 | |
|     btScalar m_currentPosition;     //!  current value of angle 
 | |
|     int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
 | |
|     btScalar m_accumulatedImpulse;
 | |
|     //!@}
 | |
| 
 | |
|     btRotationalLimitMotor()
 | |
|     {
 | |
|     	m_accumulatedImpulse = 0.f;
 | |
|         m_targetVelocity = 0;
 | |
|         m_maxMotorForce = 0.1f;
 | |
|         m_maxLimitForce = 300.0f;
 | |
|         m_loLimit = 1.0f;
 | |
|         m_hiLimit = -1.0f;
 | |
| 		m_normalCFM = 0.f;
 | |
| 		m_stopERP = 0.2f;
 | |
| 		m_stopCFM = 0.f;
 | |
|         m_bounce = 0.0f;
 | |
|         m_damping = 1.0f;
 | |
|         m_limitSoftness = 0.5f;
 | |
|         m_currentLimit = 0;
 | |
|         m_currentLimitError = 0;
 | |
|         m_enableMotor = false;
 | |
|     }
 | |
| 
 | |
|     btRotationalLimitMotor(const btRotationalLimitMotor & limot)
 | |
|     {
 | |
|         m_targetVelocity = limot.m_targetVelocity;
 | |
|         m_maxMotorForce = limot.m_maxMotorForce;
 | |
|         m_limitSoftness = limot.m_limitSoftness;
 | |
|         m_loLimit = limot.m_loLimit;
 | |
|         m_hiLimit = limot.m_hiLimit;
 | |
| 		m_normalCFM = limot.m_normalCFM;
 | |
| 		m_stopERP = limot.m_stopERP;
 | |
| 		m_stopCFM =	limot.m_stopCFM;
 | |
|         m_bounce = limot.m_bounce;
 | |
|         m_currentLimit = limot.m_currentLimit;
 | |
|         m_currentLimitError = limot.m_currentLimitError;
 | |
|         m_enableMotor = limot.m_enableMotor;
 | |
|     }
 | |
| 
 | |
| 
 | |
| 
 | |
| 	//! Is limited
 | |
|     bool isLimited() const
 | |
|     {
 | |
|     	if(m_loLimit > m_hiLimit) return false;
 | |
|     	return true;
 | |
|     }
 | |
| 
 | |
| 	//! Need apply correction
 | |
|     bool needApplyTorques() const
 | |
|     {
 | |
|     	if(m_currentLimit == 0 && m_enableMotor == false) return false;
 | |
|     	return true;
 | |
|     }
 | |
| 
 | |
| 	//! calculates  error
 | |
| 	/*!
 | |
| 	calculates m_currentLimit and m_currentLimitError.
 | |
| 	*/
 | |
| 	int testLimitValue(btScalar test_value);
 | |
| 
 | |
| 	//! apply the correction impulses for two bodies
 | |
|     btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1);
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| class btTranslationalLimitMotor
 | |
| {
 | |
| public:
 | |
| 	btVector3 m_lowerLimit;//!< the constraint lower limits
 | |
|     btVector3 m_upperLimit;//!< the constraint upper limits
 | |
|     btVector3 m_accumulatedImpulse;
 | |
|     //! Linear_Limit_parameters
 | |
|     //!@{
 | |
|     btScalar	m_limitSoftness;//!< Softness for linear limit
 | |
|     btScalar	m_damping;//!< Damping for linear limit
 | |
|     btScalar	m_restitution;//! Bounce parameter for linear limit
 | |
| 	btVector3	m_normalCFM;//!< Constraint force mixing factor
 | |
|     btVector3	m_stopERP;//!< Error tolerance factor when joint is at limit
 | |
| 	btVector3	m_stopCFM;//!< Constraint force mixing factor when joint is at limit
 | |
|     //!@}
 | |
| 	bool		m_enableMotor[3];
 | |
|     btVector3	m_targetVelocity;//!< target motor velocity
 | |
|     btVector3	m_maxMotorForce;//!< max force on motor
 | |
|     btVector3	m_currentLimitError;//!  How much is violated this limit
 | |
|     btVector3	m_currentLinearDiff;//!  Current relative offset of constraint frames
 | |
|     int			m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit
 | |
| 
 | |
|     btTranslationalLimitMotor()
 | |
|     {
 | |
|     	m_lowerLimit.setValue(0.f,0.f,0.f);
 | |
|     	m_upperLimit.setValue(0.f,0.f,0.f);
 | |
|     	m_accumulatedImpulse.setValue(0.f,0.f,0.f);
 | |
| 		m_normalCFM.setValue(0.f, 0.f, 0.f);
 | |
| 		m_stopERP.setValue(0.2f, 0.2f, 0.2f);
 | |
| 		m_stopCFM.setValue(0.f, 0.f, 0.f);
 | |
| 
 | |
|     	m_limitSoftness = 0.7f;
 | |
|     	m_damping = btScalar(1.0f);
 | |
|     	m_restitution = btScalar(0.5f);
 | |
| 		for(int i=0; i < 3; i++) 
 | |
| 		{
 | |
| 			m_enableMotor[i] = false;
 | |
| 			m_targetVelocity[i] = btScalar(0.f);
 | |
| 			m_maxMotorForce[i] = btScalar(0.f);
 | |
| 		}
 | |
|     }
 | |
| 
 | |
|     btTranslationalLimitMotor(const btTranslationalLimitMotor & other )
 | |
|     {
 | |
|     	m_lowerLimit = other.m_lowerLimit;
 | |
|     	m_upperLimit = other.m_upperLimit;
 | |
|     	m_accumulatedImpulse = other.m_accumulatedImpulse;
 | |
| 
 | |
|     	m_limitSoftness = other.m_limitSoftness ;
 | |
|     	m_damping = other.m_damping;
 | |
|     	m_restitution = other.m_restitution;
 | |
| 		m_normalCFM = other.m_normalCFM;
 | |
| 		m_stopERP = other.m_stopERP;
 | |
| 		m_stopCFM = other.m_stopCFM;
 | |
| 
 | |
| 		for(int i=0; i < 3; i++) 
 | |
| 		{
 | |
| 			m_enableMotor[i] = other.m_enableMotor[i];
 | |
| 			m_targetVelocity[i] = other.m_targetVelocity[i];
 | |
| 			m_maxMotorForce[i] = other.m_maxMotorForce[i];
 | |
| 		}
 | |
|     }
 | |
| 
 | |
|     //! Test limit
 | |
| 	/*!
 | |
|     - free means upper < lower,
 | |
|     - locked means upper == lower
 | |
|     - limited means upper > lower
 | |
|     - limitIndex: first 3 are linear, next 3 are angular
 | |
|     */
 | |
|     inline bool	isLimited(int limitIndex) const
 | |
|     {
 | |
|        return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
 | |
|     }
 | |
|     inline bool needApplyForce(int limitIndex) const
 | |
|     {
 | |
|     	if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
 | |
|     	return true;
 | |
|     }
 | |
| 	int testLimitValue(int limitIndex, btScalar test_value);
 | |
| 
 | |
| 
 | |
|     btScalar solveLinearAxis(
 | |
|     	btScalar timeStep,
 | |
|         btScalar jacDiagABInv,
 | |
|         btRigidBody& body1,const btVector3 &pointInA,
 | |
|         btRigidBody& body2,const btVector3 &pointInB,
 | |
|         int limit_index,
 | |
|         const btVector3 & axis_normal_on_a,
 | |
| 		const btVector3 & anchorPos);
 | |
| 
 | |
| 
 | |
| };
 | |
| 
 | |
| enum bt6DofFlags
 | |
| {
 | |
| 	BT_6DOF_FLAGS_CFM_NORM = 1,
 | |
| 	BT_6DOF_FLAGS_CFM_STOP = 2,
 | |
| 	BT_6DOF_FLAGS_ERP_STOP = 4
 | |
| };
 | |
| #define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
 | |
| 
 | |
| 
 | |
| /// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
 | |
| /*!
 | |
| btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'.
 | |
| currently this limit supports rotational motors<br>
 | |
| <ul>
 | |
| <li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method.
 | |
| At this moment translational motors are not supported. May be in the future. </li>
 | |
| 
 | |
| <li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit.
 | |
| This is accessible through btGeneric6DofConstraint.getLimitMotor method,
 | |
| This brings support for limit parameters and motors. </li>
 | |
| 
 | |
| <li> Angulars limits have these possible ranges:
 | |
| <table border=1 >
 | |
| <tr>
 | |
| 	<td><b>AXIS</b></td>
 | |
| 	<td><b>MIN ANGLE</b></td>
 | |
| 	<td><b>MAX ANGLE</b></td>
 | |
| </tr><tr>
 | |
| 	<td>X</td>
 | |
| 	<td>-PI</td>
 | |
| 	<td>PI</td>
 | |
| </tr><tr>
 | |
| 	<td>Y</td>
 | |
| 	<td>-PI/2</td>
 | |
| 	<td>PI/2</td>
 | |
| </tr><tr>
 | |
| 	<td>Z</td>
 | |
| 	<td>-PI</td>
 | |
| 	<td>PI</td>
 | |
| </tr>
 | |
| </table>
 | |
| </li>
 | |
| </ul>
 | |
| 
 | |
| */
 | |
| ATTRIBUTE_ALIGNED16(class) btGeneric6DofConstraint : public btTypedConstraint
 | |
| {
 | |
| protected:
 | |
| 
 | |
| 	//! relative_frames
 | |
|     //!@{
 | |
| 	btTransform	m_frameInA;//!< the constraint space w.r.t body A
 | |
|     btTransform	m_frameInB;//!< the constraint space w.r.t body B
 | |
|     //!@}
 | |
| 
 | |
|     //! Jacobians
 | |
|     //!@{
 | |
|     btJacobianEntry	m_jacLinear[3];//!< 3 orthogonal linear constraints
 | |
|     btJacobianEntry	m_jacAng[3];//!< 3 orthogonal angular constraints
 | |
|     //!@}
 | |
| 
 | |
| 	//! Linear_Limit_parameters
 | |
|     //!@{
 | |
|     btTranslationalLimitMotor m_linearLimits;
 | |
|     //!@}
 | |
| 
 | |
| 
 | |
|     //! hinge_parameters
 | |
|     //!@{
 | |
|     btRotationalLimitMotor m_angularLimits[3];
 | |
| 	//!@}
 | |
| 
 | |
| 
 | |
| protected:
 | |
|     //! temporal variables
 | |
|     //!@{
 | |
|     btScalar m_timeStep;
 | |
|     btTransform m_calculatedTransformA;
 | |
|     btTransform m_calculatedTransformB;
 | |
|     btVector3 m_calculatedAxisAngleDiff;
 | |
|     btVector3 m_calculatedAxis[3];
 | |
|     btVector3 m_calculatedLinearDiff;
 | |
| 	btScalar	m_factA;
 | |
| 	btScalar	m_factB;
 | |
| 	bool		m_hasStaticBody;
 | |
|     
 | |
| 	btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
 | |
| 
 | |
|     bool	m_useLinearReferenceFrameA;
 | |
| 	bool	m_useOffsetForConstraintFrame;
 | |
|     
 | |
| 	int		m_flags;
 | |
| 
 | |
|     //!@}
 | |
| 
 | |
|     btGeneric6DofConstraint&	operator=(btGeneric6DofConstraint&	other)
 | |
|     {
 | |
|         btAssert(0);
 | |
|         (void) other;
 | |
|         return *this;
 | |
|     }
 | |
| 
 | |
| 
 | |
| 	int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | |
| 
 | |
| 	int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | |
| 
 | |
|     void buildLinearJacobian(
 | |
|         btJacobianEntry & jacLinear,const btVector3 & normalWorld,
 | |
|         const btVector3 & pivotAInW,const btVector3 & pivotBInW);
 | |
| 
 | |
|     void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW);
 | |
| 
 | |
| 	// tests linear limits
 | |
| 	void calculateLinearInfo();
 | |
| 
 | |
| 	//! calcs the euler angles between the two bodies.
 | |
|     void calculateAngleInfo();
 | |
| 
 | |
| 
 | |
| 
 | |
| public:
 | |
| 
 | |
| 	BT_DECLARE_ALIGNED_ALLOCATOR();
 | |
| 	
 | |
| 	///for backwards compatibility during the transition to 'getInfo/getInfo2'
 | |
| 	bool		m_useSolveConstraintObsolete;
 | |
| 
 | |
|     btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA);
 | |
|     btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB);
 | |
|     
 | |
| 	//! Calcs global transform of the offsets
 | |
| 	/*!
 | |
| 	Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
 | |
| 	\sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo
 | |
| 	*/
 | |
|     void calculateTransforms(const btTransform& transA,const btTransform& transB);
 | |
| 
 | |
| 	void calculateTransforms();
 | |
| 
 | |
| 	//! Gets the global transform of the offset for body A
 | |
|     /*!
 | |
|     \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
 | |
|     */
 | |
|     const btTransform & getCalculatedTransformA() const
 | |
|     {
 | |
|     	return m_calculatedTransformA;
 | |
|     }
 | |
| 
 | |
|     //! Gets the global transform of the offset for body B
 | |
|     /*!
 | |
|     \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
 | |
|     */
 | |
|     const btTransform & getCalculatedTransformB() const
 | |
|     {
 | |
|     	return m_calculatedTransformB;
 | |
|     }
 | |
| 
 | |
|     const btTransform & getFrameOffsetA() const
 | |
|     {
 | |
|     	return m_frameInA;
 | |
|     }
 | |
| 
 | |
|     const btTransform & getFrameOffsetB() const
 | |
|     {
 | |
|     	return m_frameInB;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     btTransform & getFrameOffsetA()
 | |
|     {
 | |
|     	return m_frameInA;
 | |
|     }
 | |
| 
 | |
|     btTransform & getFrameOffsetB()
 | |
|     {
 | |
|     	return m_frameInB;
 | |
|     }
 | |
| 
 | |
|     void setFrameOffsetAOrigin(const btVector3& v)
 | |
|     {
 | |
|         m_frameInA.setOrigin(v);
 | |
|     }
 | |
| 
 | |
| 	//! performs Jacobian calculation, and also calculates angle differences and axis
 | |
|     virtual void	buildJacobian();
 | |
| 
 | |
| 	virtual void getInfo1 (btConstraintInfo1* info);
 | |
| 
 | |
| 	void getInfo1NonVirtual (btConstraintInfo1* info);
 | |
| 
 | |
| 	virtual void getInfo2 (btConstraintInfo2* info);
 | |
| 
 | |
| 	void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
 | |
| 
 | |
| 
 | |
|     void	updateRHS(btScalar	timeStep);
 | |
| 
 | |
| 	//! Get the rotation axis in global coordinates
 | |
| 	/*!
 | |
| 	\pre btGeneric6DofConstraint.buildJacobian must be called previously.
 | |
| 	*/
 | |
|     btVector3 getAxis(int axis_index) const;
 | |
| 
 | |
|     //! Get the relative Euler angle
 | |
|     /*!
 | |
| 	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
 | |
| 	*/
 | |
|     btScalar getAngle(int axis_index) const;
 | |
| 
 | |
| 	//! Get the relative position of the constraint pivot
 | |
|     /*!
 | |
| 	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
 | |
| 	*/
 | |
| 	btScalar getRelativePivotPosition(int axis_index) const;
 | |
| 
 | |
| 	void setFrames(const btTransform & frameA, const btTransform & frameB);
 | |
| 
 | |
| 	//! Test angular limit.
 | |
| 	/*!
 | |
| 	Calculates angular correction and returns true if limit needs to be corrected.
 | |
| 	\pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
 | |
| 	*/
 | |
|     bool testAngularLimitMotor(int axis_index);
 | |
| 
 | |
|     void	setLinearLowerLimit(const btVector3& linearLower)
 | |
|     {
 | |
|     	m_linearLimits.m_lowerLimit = linearLower;
 | |
|     }
 | |
| 
 | |
| 	void	getLinearLowerLimit(btVector3& linearLower) const
 | |
| 	{
 | |
| 		linearLower = m_linearLimits.m_lowerLimit;
 | |
| 	}
 | |
| 
 | |
| 	void	setLinearUpperLimit(const btVector3& linearUpper)
 | |
| 	{
 | |
| 		m_linearLimits.m_upperLimit = linearUpper;
 | |
| 	}
 | |
| 
 | |
| 	void	getLinearUpperLimit(btVector3& linearUpper) const
 | |
| 	{
 | |
| 		linearUpper = m_linearLimits.m_upperLimit;
 | |
| 	}
 | |
| 
 | |
|     void	setAngularLowerLimit(const btVector3& angularLower)
 | |
|     {
 | |
| 		for(int i = 0; i < 3; i++) 
 | |
| 			m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
 | |
|     }
 | |
| 
 | |
| 	void	getAngularLowerLimit(btVector3& angularLower) const
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++) 
 | |
| 			angularLower[i] = m_angularLimits[i].m_loLimit;
 | |
| 	}
 | |
| 
 | |
|     void	setAngularUpperLimit(const btVector3& angularUpper)
 | |
|     {
 | |
| 		for(int i = 0; i < 3; i++)
 | |
| 			m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
 | |
|     }
 | |
| 
 | |
| 	void	getAngularUpperLimit(btVector3& angularUpper) const
 | |
| 	{
 | |
| 		for(int i = 0; i < 3; i++)
 | |
| 			angularUpper[i] = m_angularLimits[i].m_hiLimit;
 | |
| 	}
 | |
| 
 | |
| 	//! Retrieves the angular limit informacion
 | |
|     btRotationalLimitMotor * getRotationalLimitMotor(int index)
 | |
|     {
 | |
|     	return &m_angularLimits[index];
 | |
|     }
 | |
| 
 | |
|     //! Retrieves the  limit informacion
 | |
|     btTranslationalLimitMotor * getTranslationalLimitMotor()
 | |
|     {
 | |
|     	return &m_linearLimits;
 | |
|     }
 | |
| 
 | |
|     //first 3 are linear, next 3 are angular
 | |
|     void setLimit(int axis, btScalar lo, btScalar hi)
 | |
|     {
 | |
|     	if(axis<3)
 | |
|     	{
 | |
|     		m_linearLimits.m_lowerLimit[axis] = lo;
 | |
|     		m_linearLimits.m_upperLimit[axis] = hi;
 | |
|     	}
 | |
|     	else
 | |
|     	{
 | |
| 			lo = btNormalizeAngle(lo);
 | |
| 			hi = btNormalizeAngle(hi);
 | |
|     		m_angularLimits[axis-3].m_loLimit = lo;
 | |
|     		m_angularLimits[axis-3].m_hiLimit = hi;
 | |
|     	}
 | |
|     }
 | |
| 
 | |
| 	//! Test limit
 | |
| 	/*!
 | |
|     - free means upper < lower,
 | |
|     - locked means upper == lower
 | |
|     - limited means upper > lower
 | |
|     - limitIndex: first 3 are linear, next 3 are angular
 | |
|     */
 | |
|     bool	isLimited(int limitIndex) const
 | |
|     {
 | |
|     	if(limitIndex<3)
 | |
|     	{
 | |
| 			return m_linearLimits.isLimited(limitIndex);
 | |
| 
 | |
|     	}
 | |
|         return m_angularLimits[limitIndex-3].isLimited();
 | |
|     }
 | |
| 
 | |
| 	virtual void calcAnchorPos(void); // overridable
 | |
| 
 | |
| 	int get_limit_motor_info2(	btRotationalLimitMotor * limot,
 | |
| 								const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
 | |
| 								btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false);
 | |
| 
 | |
| 	// access for UseFrameOffset
 | |
| 	bool getUseFrameOffset() const { return m_useOffsetForConstraintFrame; }
 | |
| 	void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
 | |
| 	
 | |
| 	bool getUseLinearReferenceFrameA() const { return m_useLinearReferenceFrameA; }
 | |
| 	void setUseLinearReferenceFrameA(bool linearReferenceFrameA) { m_useLinearReferenceFrameA = linearReferenceFrameA; }
 | |
| 
 | |
| 	///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
 | |
| 	///If no axis is provided, it uses the default axis for this constraint.
 | |
| 	virtual	void setParam(int num, btScalar value, int axis = -1);
 | |
| 	///return the local value of parameter
 | |
| 	virtual	btScalar getParam(int num, int axis = -1) const;
 | |
| 
 | |
| 	void setAxis( const btVector3& axis1, const btVector3& axis2);
 | |
| 
 | |
|     	virtual	int getFlags() const
 | |
|     	{
 | |
|         	return m_flags;
 | |
| 	}
 | |
| 
 | |
| 	virtual	int	calculateSerializeBufferSize() const;
 | |
| 
 | |
| 	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | |
| 	virtual	const char*	serialize(void* dataBuffer, btSerializer* serializer) const;
 | |
| 
 | |
| 	
 | |
| };
 | |
| 
 | |
| 
 | |
| struct btGeneric6DofConstraintData
 | |
| {
 | |
| 	btTypedConstraintData	m_typeConstraintData;
 | |
| 	btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
 | |
| 	btTransformFloatData m_rbBFrame;
 | |
| 	
 | |
| 	btVector3FloatData	m_linearUpperLimit;
 | |
| 	btVector3FloatData	m_linearLowerLimit;
 | |
| 
 | |
| 	btVector3FloatData	m_angularUpperLimit;
 | |
| 	btVector3FloatData	m_angularLowerLimit;
 | |
| 	
 | |
| 	int	m_useLinearReferenceFrameA;
 | |
| 	int m_useOffsetForConstraintFrame;
 | |
| };
 | |
| 
 | |
| struct btGeneric6DofConstraintDoubleData2
 | |
| {
 | |
| 	btTypedConstraintDoubleData	m_typeConstraintData;
 | |
| 	btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
 | |
| 	btTransformDoubleData m_rbBFrame;
 | |
| 	
 | |
| 	btVector3DoubleData	m_linearUpperLimit;
 | |
| 	btVector3DoubleData	m_linearLowerLimit;
 | |
| 
 | |
| 	btVector3DoubleData	m_angularUpperLimit;
 | |
| 	btVector3DoubleData	m_angularLowerLimit;
 | |
| 	
 | |
| 	int	m_useLinearReferenceFrameA;
 | |
| 	int m_useOffsetForConstraintFrame;
 | |
| };
 | |
| 
 | |
| SIMD_FORCE_INLINE	int	btGeneric6DofConstraint::calculateSerializeBufferSize() const
 | |
| {
 | |
| 	return sizeof(btGeneric6DofConstraintData2);
 | |
| }
 | |
| 
 | |
| 	///fills the dataBuffer and returns the struct name (and 0 on failure)
 | |
| SIMD_FORCE_INLINE	const char*	btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
 | |
| {
 | |
| 
 | |
| 	btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer;
 | |
| 	btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
 | |
| 
 | |
| 	m_frameInA.serialize(dof->m_rbAFrame);
 | |
| 	m_frameInB.serialize(dof->m_rbBFrame);
 | |
| 
 | |
| 		
 | |
| 	int i;
 | |
| 	for (i=0;i<3;i++)
 | |
| 	{
 | |
| 		dof->m_angularLowerLimit.m_floats[i] =  m_angularLimits[i].m_loLimit;
 | |
| 		dof->m_angularUpperLimit.m_floats[i] =  m_angularLimits[i].m_hiLimit;
 | |
| 		dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i];
 | |
| 		dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i];
 | |
| 	}
 | |
| 	
 | |
| 	dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0;
 | |
| 	dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0;
 | |
| 
 | |
| 	return btGeneric6DofConstraintDataName;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif //BT_GENERIC_6DOF_CONSTRAINT_H
 |