forked from LeenkxTeam/LNXSDK
		
	
		
			
				
	
	
		
			410 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			410 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//------------------------------------------------------------------------------
 | 
						|
// File: RefClock.cpp
 | 
						|
//
 | 
						|
// Desc: DirectShow base classes - implements the IReferenceClock interface.
 | 
						|
//
 | 
						|
// Copyright (c) 1992-2001 Microsoft Corporation.  All rights reserved.
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
#undef NOMINMAX
 | 
						|
#include <streams.h>
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#ifdef DXMPERF
 | 
						|
#include "dxmperf.h"
 | 
						|
#endif // DXMPERF
 | 
						|
 | 
						|
#ifndef max
 | 
						|
#define max(a, b) (((a) > (b)) ? (a) : (b))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef min
 | 
						|
#define min(a, b) (((a) < (b)) ? (a) : (b))
 | 
						|
#endif
 | 
						|
 | 
						|
// 'this' used in constructor list
 | 
						|
#pragma warning(disable:4355)
 | 
						|
 | 
						|
 | 
						|
STDMETHODIMP CBaseReferenceClock::NonDelegatingQueryInterface(
 | 
						|
    REFIID riid,
 | 
						|
    __deref_out void ** ppv)
 | 
						|
{
 | 
						|
    HRESULT hr;
 | 
						|
 | 
						|
    if (riid == IID_IReferenceClock)
 | 
						|
    {
 | 
						|
        hr = GetInterface((IReferenceClock *) this, ppv);
 | 
						|
    }
 | 
						|
    else if (riid == IID_IReferenceClockTimerControl)
 | 
						|
    {
 | 
						|
        hr = GetInterface((IReferenceClockTimerControl *) this, ppv);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        hr = CUnknown::NonDelegatingQueryInterface(riid, ppv);
 | 
						|
    }
 | 
						|
    return hr;
 | 
						|
}
 | 
						|
 | 
						|
CBaseReferenceClock::~CBaseReferenceClock()
 | 
						|
{
 | 
						|
#ifdef DXMPERF
 | 
						|
    PERFLOG_DTOR( L"CBaseReferenceClock", (IReferenceClock *) this );
 | 
						|
#endif // DXMPERF
 | 
						|
 | 
						|
    if (m_TimerResolution) timeEndPeriod(m_TimerResolution);
 | 
						|
 | 
						|
    if (m_pSchedule)
 | 
						|
    {
 | 
						|
        m_pSchedule->DumpLinkedList();
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_hThread)
 | 
						|
    {
 | 
						|
        m_bAbort = TRUE;
 | 
						|
        TriggerThread();
 | 
						|
        WaitForSingleObject( m_hThread, INFINITE );
 | 
						|
        EXECUTE_ASSERT( CloseHandle(m_hThread) );
 | 
						|
        m_hThread = 0;
 | 
						|
        EXECUTE_ASSERT( CloseHandle(m_pSchedule->GetEvent()) );
 | 
						|
	delete m_pSchedule;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// A derived class may supply a hThreadEvent if it has its own thread that will take care
 | 
						|
// of calling the schedulers Advise method.  (Refere to CBaseReferenceClock::AdviseThread()
 | 
						|
// to see what such a thread has to do.)
 | 
						|
CBaseReferenceClock::CBaseReferenceClock( __in_opt LPCTSTR pName, 
 | 
						|
                                          __inout_opt LPUNKNOWN pUnk, 
 | 
						|
                                          __inout HRESULT *phr, 
 | 
						|
                                          __inout_opt CAMSchedule * pShed )
 | 
						|
: CUnknown( pName, pUnk )
 | 
						|
, m_rtLastGotTime(0)
 | 
						|
, m_TimerResolution(0)
 | 
						|
, m_bAbort( FALSE )
 | 
						|
, m_pSchedule( pShed ? pShed : new CAMSchedule(CreateEvent(NULL, FALSE, FALSE, NULL)) )
 | 
						|
, m_hThread(0)
 | 
						|
{
 | 
						|
 | 
						|
#ifdef DXMPERF
 | 
						|
    PERFLOG_CTOR( pName ? pName : L"CBaseReferenceClock", (IReferenceClock *) this );
 | 
						|
#endif // DXMPERF
 | 
						|
 | 
						|
    ASSERT(m_pSchedule);
 | 
						|
    if (!m_pSchedule)
 | 
						|
    {
 | 
						|
        *phr = E_OUTOFMEMORY;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        // Set up the highest resolution timer we can manage
 | 
						|
        TIMECAPS tc;
 | 
						|
        m_TimerResolution = (TIMERR_NOERROR == timeGetDevCaps(&tc, sizeof(tc)))
 | 
						|
                            ? tc.wPeriodMin
 | 
						|
                            : 1;
 | 
						|
 | 
						|
        timeBeginPeriod(m_TimerResolution);
 | 
						|
 | 
						|
        /* Initialise our system times - the derived clock should set the right values */
 | 
						|
        m_dwPrevSystemTime = timeGetTime();
 | 
						|
        m_rtPrivateTime = (UNITS / MILLISECONDS) * m_dwPrevSystemTime;
 | 
						|
 | 
						|
        #ifdef PERF
 | 
						|
            m_idGetSystemTime = MSR_REGISTER(TEXT("CBaseReferenceClock::GetTime"));
 | 
						|
        #endif
 | 
						|
 | 
						|
        if ( !pShed )
 | 
						|
        {
 | 
						|
            DWORD ThreadID;
 | 
						|
            m_hThread = ::CreateThread(NULL,                  // Security attributes
 | 
						|
                                       (DWORD) 0,             // Initial stack size
 | 
						|
                                       AdviseThreadFunction,  // Thread start address
 | 
						|
                                       (LPVOID) this,         // Thread parameter
 | 
						|
                                       (DWORD) 0,             // Creation flags
 | 
						|
                                       &ThreadID);            // Thread identifier
 | 
						|
 | 
						|
            if (m_hThread)
 | 
						|
            {
 | 
						|
                SetThreadPriority( m_hThread, THREAD_PRIORITY_TIME_CRITICAL );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                *phr = E_FAIL;
 | 
						|
                EXECUTE_ASSERT( CloseHandle(m_pSchedule->GetEvent()) );
 | 
						|
                delete m_pSchedule;
 | 
						|
                m_pSchedule = NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void CBaseReferenceClock::Restart (IN REFERENCE_TIME rtMinTime)
 | 
						|
{
 | 
						|
    Lock();
 | 
						|
    m_rtLastGotTime = rtMinTime ;
 | 
						|
    Unlock();
 | 
						|
}
 | 
						|
 | 
						|
STDMETHODIMP CBaseReferenceClock::GetTime(__out REFERENCE_TIME *pTime)
 | 
						|
{
 | 
						|
    HRESULT hr;
 | 
						|
    if (pTime)
 | 
						|
    {
 | 
						|
        REFERENCE_TIME rtNow;
 | 
						|
        Lock();
 | 
						|
        rtNow = GetPrivateTime();
 | 
						|
        if (rtNow > m_rtLastGotTime)
 | 
						|
        {
 | 
						|
            m_rtLastGotTime = rtNow;
 | 
						|
            hr = S_OK;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            hr = S_FALSE;
 | 
						|
        }
 | 
						|
        *pTime = m_rtLastGotTime;
 | 
						|
        Unlock();
 | 
						|
        MSR_INTEGER(m_idGetSystemTime, LONG((*pTime) / (UNITS/MILLISECONDS)) );
 | 
						|
 | 
						|
#ifdef DXMPERF
 | 
						|
        PERFLOG_GETTIME( (IReferenceClock *) this, *pTime );
 | 
						|
#endif // DXMPERF
 | 
						|
 | 
						|
    }
 | 
						|
    else hr = E_POINTER;
 | 
						|
 | 
						|
    return hr;
 | 
						|
}
 | 
						|
 | 
						|
/* Ask for an async notification that a time has elapsed */
 | 
						|
 | 
						|
STDMETHODIMP CBaseReferenceClock::AdviseTime(
 | 
						|
    REFERENCE_TIME baseTime,         // base reference time
 | 
						|
    REFERENCE_TIME streamTime,       // stream offset time
 | 
						|
    HEVENT hEvent,                   // advise via this event
 | 
						|
    __out DWORD_PTR *pdwAdviseCookie)// where your cookie goes
 | 
						|
{
 | 
						|
    CheckPointer(pdwAdviseCookie, E_POINTER);
 | 
						|
    *pdwAdviseCookie = 0;
 | 
						|
 | 
						|
    // Check that the event is not already set
 | 
						|
    ASSERT(WAIT_TIMEOUT == WaitForSingleObject(HANDLE(hEvent),0));
 | 
						|
 | 
						|
    HRESULT hr;
 | 
						|
 | 
						|
    const REFERENCE_TIME lRefTime = baseTime + streamTime;
 | 
						|
    if ( lRefTime <= 0 || lRefTime == MAX_TIME )
 | 
						|
    {
 | 
						|
        hr = E_INVALIDARG;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        *pdwAdviseCookie = m_pSchedule->AddAdvisePacket( lRefTime, 0, HANDLE(hEvent), FALSE );
 | 
						|
        hr = *pdwAdviseCookie ? NOERROR : E_OUTOFMEMORY;
 | 
						|
    }
 | 
						|
    return hr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Ask for an asynchronous periodic notification that a time has elapsed */
 | 
						|
 | 
						|
STDMETHODIMP CBaseReferenceClock::AdvisePeriodic(
 | 
						|
    REFERENCE_TIME StartTime,         // starting at this time
 | 
						|
    REFERENCE_TIME PeriodTime,        // time between notifications
 | 
						|
    HSEMAPHORE hSemaphore,            // advise via a semaphore
 | 
						|
    __out DWORD_PTR *pdwAdviseCookie) // where your cookie goes
 | 
						|
{
 | 
						|
    CheckPointer(pdwAdviseCookie, E_POINTER);
 | 
						|
    *pdwAdviseCookie = 0;
 | 
						|
 | 
						|
    HRESULT hr;
 | 
						|
    if (StartTime > 0 && PeriodTime > 0 && StartTime != MAX_TIME )
 | 
						|
    {
 | 
						|
        *pdwAdviseCookie = m_pSchedule->AddAdvisePacket( StartTime, PeriodTime, HANDLE(hSemaphore), TRUE );
 | 
						|
        hr = *pdwAdviseCookie ? NOERROR : E_OUTOFMEMORY;
 | 
						|
    }
 | 
						|
    else hr = E_INVALIDARG;
 | 
						|
 | 
						|
    return hr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
STDMETHODIMP CBaseReferenceClock::Unadvise(DWORD_PTR dwAdviseCookie)
 | 
						|
{
 | 
						|
    return m_pSchedule->Unadvise(dwAdviseCookie);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
REFERENCE_TIME CBaseReferenceClock::GetPrivateTime()
 | 
						|
{
 | 
						|
    CAutoLock cObjectLock(this);
 | 
						|
 | 
						|
 | 
						|
    /* If the clock has wrapped then the current time will be less than
 | 
						|
     * the last time we were notified so add on the extra milliseconds
 | 
						|
     *
 | 
						|
     * The time period is long enough so that the likelihood of
 | 
						|
     * successive calls spanning the clock cycle is not considered.
 | 
						|
     */
 | 
						|
 | 
						|
    DWORD dwTime = timeGetTime();
 | 
						|
    {
 | 
						|
        m_rtPrivateTime += Int32x32To64(UNITS / MILLISECONDS, (DWORD)(dwTime - m_dwPrevSystemTime));
 | 
						|
        m_dwPrevSystemTime = dwTime;
 | 
						|
    }
 | 
						|
 | 
						|
    return m_rtPrivateTime;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Adjust the current time by the input value.  This allows an
 | 
						|
   external time source to work out some of the latency of the clock
 | 
						|
   system and adjust the "current" time accordingly.  The intent is
 | 
						|
   that the time returned to the user is synchronised to a clock
 | 
						|
   source and allows drift to be catered for.
 | 
						|
 | 
						|
   For example: if the clock source detects a drift it can pass a delta
 | 
						|
   to the current time rather than having to set an explicit time.
 | 
						|
*/
 | 
						|
 | 
						|
STDMETHODIMP CBaseReferenceClock::SetTimeDelta(const REFERENCE_TIME & TimeDelta)
 | 
						|
{
 | 
						|
#ifdef DEBUG
 | 
						|
 | 
						|
    // Just break if passed an improper time delta value
 | 
						|
    LONGLONG llDelta = TimeDelta > 0 ? TimeDelta : -TimeDelta;
 | 
						|
    if (llDelta > UNITS * 1000) {
 | 
						|
        DbgLog((LOG_TRACE, 0, TEXT("Bad Time Delta")));
 | 
						|
        //DebugBreak();
 | 
						|
    }
 | 
						|
 | 
						|
    // We're going to calculate a "severity" for the time change. Max -1
 | 
						|
    // min 8.  We'll then use this as the debug logging level for a
 | 
						|
    // debug log message.
 | 
						|
    const LONG usDelta = LONG(TimeDelta/10);      // Delta in micro-secs
 | 
						|
 | 
						|
    DWORD delta        = abs(usDelta);            // varying delta
 | 
						|
    // Severity == 8 - ceil(log<base 8>(abs( micro-secs delta)))
 | 
						|
    int   Severity     = 8;
 | 
						|
    while ( delta > 0 )
 | 
						|
    {
 | 
						|
        delta >>= 3;                              // div 8
 | 
						|
        Severity--;
 | 
						|
    }
 | 
						|
 | 
						|
    // Sev == 0 => > 2 second delta!
 | 
						|
    DbgLog((LOG_TIMING, Severity < 0 ? 0 : Severity,
 | 
						|
        TEXT("Sev %2i: CSystemClock::SetTimeDelta(%8ld us) %lu -> %lu ms."),
 | 
						|
        Severity, usDelta, DWORD(ConvertToMilliseconds(m_rtPrivateTime)),
 | 
						|
        DWORD(ConvertToMilliseconds(TimeDelta+m_rtPrivateTime)) ));
 | 
						|
 | 
						|
    // Don't want the DbgBreak to fire when running stress on debug-builds.
 | 
						|
    #ifdef BREAK_ON_SEVERE_TIME_DELTA
 | 
						|
        if (Severity < 0)
 | 
						|
            DbgBreakPoint(TEXT("SetTimeDelta > 16 seconds!"),
 | 
						|
                          TEXT(__FILE__),__LINE__);
 | 
						|
    #endif
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
    CAutoLock cObjectLock(this);
 | 
						|
    m_rtPrivateTime += TimeDelta;
 | 
						|
    // If time goes forwards, and we have advises, then we need to
 | 
						|
    // trigger the thread so that it can re-evaluate its wait time.
 | 
						|
    // Since we don't want the cost of the thread switches if the change
 | 
						|
    // is really small, only do it if clock goes forward by more than
 | 
						|
    // 0.5 millisecond.  If the time goes backwards, the thread will
 | 
						|
    // wake up "early" (relativly speaking) and will re-evaluate at
 | 
						|
    // that time.
 | 
						|
    if ( TimeDelta > 5000 && m_pSchedule->GetAdviseCount() > 0 ) TriggerThread();
 | 
						|
    return NOERROR;
 | 
						|
}
 | 
						|
 | 
						|
// Thread stuff
 | 
						|
 | 
						|
DWORD __stdcall CBaseReferenceClock::AdviseThreadFunction(__in LPVOID p)
 | 
						|
{
 | 
						|
    return DWORD(reinterpret_cast<CBaseReferenceClock*>(p)->AdviseThread());
 | 
						|
}
 | 
						|
 | 
						|
HRESULT CBaseReferenceClock::AdviseThread()
 | 
						|
{
 | 
						|
    DWORD dwWait = INFINITE;
 | 
						|
 | 
						|
    // The first thing we do is wait until something interesting happens
 | 
						|
    // (meaning a first advise or shutdown).  This prevents us calling
 | 
						|
    // GetPrivateTime immediately which is goodness as that is a virtual
 | 
						|
    // routine and the derived class may not yet be constructed.  (This
 | 
						|
    // thread is created in the base class constructor.)
 | 
						|
 | 
						|
    while ( !m_bAbort )
 | 
						|
    {
 | 
						|
        // Wait for an interesting event to happen
 | 
						|
        DbgLog((LOG_TIMING, 3, TEXT("CBaseRefClock::AdviseThread() Delay: %lu ms"), dwWait ));
 | 
						|
        WaitForSingleObject(m_pSchedule->GetEvent(), dwWait);
 | 
						|
        if (m_bAbort) break;
 | 
						|
 | 
						|
        // There are several reasons why we need to work from the internal
 | 
						|
        // time, mainly to do with what happens when time goes backwards.
 | 
						|
        // Mainly, it stop us looping madly if an event is just about to
 | 
						|
        // expire when the clock goes backward (i.e. GetTime stop for a
 | 
						|
        // while).
 | 
						|
        const REFERENCE_TIME  rtNow = GetPrivateTime();
 | 
						|
 | 
						|
        DbgLog((LOG_TIMING, 3,
 | 
						|
              TEXT("CBaseRefClock::AdviseThread() Woke at = %lu ms"),
 | 
						|
              ConvertToMilliseconds(rtNow) ));
 | 
						|
 | 
						|
        // We must add in a millisecond, since this is the resolution of our
 | 
						|
        // WaitForSingleObject timer.  Failure to do so will cause us to loop
 | 
						|
        // franticly for (approx) 1 a millisecond.
 | 
						|
        m_rtNextAdvise = m_pSchedule->Advise( 10000 + rtNow );
 | 
						|
        LONGLONG llWait = m_rtNextAdvise - rtNow;
 | 
						|
 | 
						|
        ASSERT( llWait > 0 );
 | 
						|
 | 
						|
        llWait = ConvertToMilliseconds(llWait);
 | 
						|
        // DON'T replace this with a max!! (The type's of these things is VERY important)
 | 
						|
        dwWait = (llWait > REFERENCE_TIME(UINT_MAX)) ? UINT_MAX : DWORD(llWait);
 | 
						|
    };
 | 
						|
    return NOERROR;
 | 
						|
}
 | 
						|
 | 
						|
HRESULT CBaseReferenceClock::SetDefaultTimerResolution(
 | 
						|
        REFERENCE_TIME timerResolution // in 100ns
 | 
						|
    )
 | 
						|
{
 | 
						|
    CAutoLock cObjectLock(this);
 | 
						|
    if( 0 == timerResolution  ) {
 | 
						|
        if( m_TimerResolution ) {
 | 
						|
           timeEndPeriod( m_TimerResolution );
 | 
						|
           m_TimerResolution = 0;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        TIMECAPS tc;
 | 
						|
        DWORD dwMinResolution = (TIMERR_NOERROR == timeGetDevCaps(&tc, sizeof(tc)))
 | 
						|
                            ? tc.wPeriodMin
 | 
						|
                            : 1;
 | 
						|
        DWORD dwResolution = max( dwMinResolution, DWORD(timerResolution / 10000) );
 | 
						|
        if( dwResolution != m_TimerResolution ) {
 | 
						|
            timeEndPeriod(m_TimerResolution);
 | 
						|
            m_TimerResolution = dwResolution;
 | 
						|
            timeBeginPeriod( m_TimerResolution );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return S_OK;
 | 
						|
}
 | 
						|
 | 
						|
HRESULT CBaseReferenceClock::GetDefaultTimerResolution(
 | 
						|
        __out REFERENCE_TIME* pTimerResolution // in 100ns
 | 
						|
    )
 | 
						|
{
 | 
						|
    if( !pTimerResolution ) {
 | 
						|
        return E_POINTER;
 | 
						|
    }
 | 
						|
    CAutoLock cObjectLock(this);
 | 
						|
    *pTimerResolution = m_TimerResolution * 10000;
 | 
						|
    return S_OK;
 | 
						|
}
 |